Design of New Ternary Flip Flops Using CNTFET in Nanotechnology
Subject Areas : electrical and computer engineeringkatayoun rahbari 1 , seyed ali hosseinoi 2
1 -
2 - / Tehran-Irandepartment of electronic and computer of Yadegar-imam islamic azad university
Keywords: Flip-flop, Ternary Circuits, Carbon Nanotube Transistor,
Abstract :
Using multi-valued logic can reduce chip interconnections, which can have a direct effect on chip area and interconnections power consumption. In recent years, due to the ability of Nano electronics in the design of multi-level circuits, research in this field has flourished. The sequential circuits, flip-flops are important components of processors and VLSI circuits. In this paper, for the first time, a ternary flip-flop with a pulse generator has been proposed, and also a ternary binary-decode flip-flop and the first flip-flop using a buffer have been introduced. Then these flip-flops are compared with themselves and previous circuits. Also, these flip-flops have been used in the design of the ternary counter. The simulation results with HSPICE software show the correct performance of the proposed circuits. There is a 20% improvement in delay and a reduction in the number of transistors in the STI pulse generator flip-flop model, 30% in the SP flip-flop, and 30% in the buffer flip-flop. Also, in the comparison table, the advantages and disadvantages of each have been examined.
[1] M. Mukaidono, "Regular ternary logic functions ternary logic functions suitable for treating ambiguity," IEEE Trans. Computers, vol. 35, no. 2, pp. 179-183, Feb. 1986.
[2] A. Heung and H. T. Mouftah, "Depletion/enhancement CMOS for a lower power family of three-valued logic circuits," IEEE J. Solid-State Circuits, vol. 20, no. 2, pp. 609-616, Apr. 1985.
[3] M. H. Moaiyeri, Z. M. Taheri, M. Rezaei Khezeli, and A. Jalali, "Efficient passive shielding of MWCNT interconnects to reduce crosstalk effects in multiple-valued logic circuits," IEEE Trans. Electromagn. Compat., vol. 61, no. 5, pp. 1593-1601, Oct. 2019.
[4] M. Rezaei Khezeli, M. H. Moaiyeri, and A. Jalali, "Comparative analysis of simultaneous switching noise effects in MWCNT bundle and Cu power interconnects in CNTFET-based ternary circuits," IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 27, no. 1, pp. 37-46, Jan. 2019.
[5] K. Rahbari and S. A. Hosseini, "Novel ternary D-flip-flap-flop and counter based on successor and predecessor in nanotechnology," AEU Int. J. Electron. Commun., vol. 109, pp. 107-120, Sept. 2019.
[6] K. Rahbari and S. A. Hosseini, "Design of ternary logic gates and buffer based memory cell in nanoelectronics," International J. of Electronics, vol. 109, no. 11, pp. 1973-1995, 2022.
[7] A. Akturk, G. Pennington, N. Goldsman, and A. Wickenden, "Electron transport and velocity oscillations in a carbon nanotube," IEEE Trans. Nanotechnical, vol. 6, no. 4, pp. 469-474, Jul. 2007.
[8] A. Raychowdhury and K. Roy, "Carbon nanotube electronics: design of high-performance and low-power digital circuits," IEEE Trans. on Circuits Syst. I, Reg. Papers, vol. 54, no. 11, pp. 2391-2401, Nov. 2007.
[9] M. Moonesan, R. F. Mirzaee, M. S. Daliri, and K. Navi, "Robust fuzzy SRAM for accurate and ultra-low-power MVL and fuzzy logic applications," Electronics Letters, vol. 52, no. 25, pp. 2032-2034, Dec. 2016.
[10] Stanford Nanoelectronics Lab, VS-CNFET Model: Stanford University Virtual Source CNFET Model [Online]. (2008) Available: https://nano.stanford.edu/downloads/vs-cnfet-model.
[11] J. Shaikh and F. Rahman, "High speed and low power preset-able modified TSPC D flip-flop design and performance comparison with TSPC D flip-flop," in Proc. Int. Symp. on Devices, Circuits and Systems, 4 pp., Howrah, India, 29-31 Mar. 2018.
[12] J. Deng, et al., "Carbon nanotube transistor circuits: circuit-level performance benchmarking and design options for living with imperfections," in Proc. Int. Solid State Circuits Conf., pp. 70-588, Howrah, India, San Francisco, CA, USA, 11-15 Feb. 2007.
[13] M. Aguirre-Hernandez and M. Linares-Aranda, "A clock-gated pulse-triggered D flip-flop for low-power high-performance VLSI synchronous systems," in Proc. Int. Caribbean Conf. on Devices, Circuits and Systems, pp. 293-297, Playa del Carmen, Mexico, 26-28 Apr. 2006.
[14] M. H. Moaiyeri, A. Doostaregan, and K. Navi, "Design of energy-efficient and robust ternary circuits for nanotechnology," IET Circuits, Devices, Syst, vol. 5, no. 4, pp. 285-296, Jul. 2011.
[15] E. Shahrom, S.A Hosseini, "A new low power multiplexer based ternary multiplier using CNTFETs," AEU International Journal of Electronics and Communications, vol.15, no. 4, pp. 191-207,2018.
[16] S. Tabrizchi and K. Navi, "Novel CNTFET ternary circuit technoloques for high-performance and rnergy-efficient design," IET Circuits, vol. 13, no. 2, pp. 193-202, Mar. 2019.
[17] M. Takbiri and K. Navi, "Analysis review of noise margin in MVL: clarification of a deceptive matter," Circuits and System, vol. 38, pp. 4280-4301, 2019.
[18] M. Ghelichkhan, S. A. Hosseini, and S. H. Pishgar Komleh, "Multi-digit binaryto-quaternary and quaternary-to-binary converters and their applications in nanoelectronics," Circuits Syst. Signal Process., vol. 39, pp. 1920-1942, 2020.
[19] S. Kim and T. Lim, "An optimal gate design for the synthesis of ternary logic circuits," in Proc. 23rd Asia and South Pacific Design Automation Conf., ASP-DAC'18, pp. 476-481, Jeju, South Korea, 22-25 Jan. 2018.
[20] M. Shahangian, S. A. Hosseini, S. H. Pishgarkomleh, "Design of a multi-digit binary to ternary convert based on CNTFETs," Circuits and systems and Signal Processing, vol. 38, pp. 2544-2563, 2019.
[21] S. A. Hosseini, S. Etezadi, "A novel very low-complexity multi-valued logic comparator in nanoelectronics," Circuits and systems and Signal Processing, vol. 38, pp. 4056-4078, 2019.
[22] M. H. Moayeri and M. K. Q. Jooq, "Breaking the limits in ternary logic: an ultra efficient auto backup/restore nonvolatile ternary flip-flop using negative capacitance CNTFET technology," IEEE Access, vol. 9, pp. 132641-132651, 2021.
[23] A. A. Javadi, M. Morsali, and H. M. Moayeri, "Magnetic nonvolatile flip-flops with spin-hall assistance for power gating in ternary systems," J. of Computational Electronics, vol. 19, no. 3, pp. 175-1186, Sept. 2020.
[24] T. Sharma and L. Kumre, "Design of unbalanced ternary counters using shifting literals based D-Flip-Flops in carbon nanotube technology," Elsevier, Computer and Electronic J., vol. 93, Article ID: 107249, Jul. 2021.
[25] R. Faghih Mirzaee and N. Farahani, "Design of a ternary edge-triggered D flip-flap-flop for multiple-valued sequential logic," J. of Low Power Electronics, vol. 13, no. 1, pp. 36-46, Mar. 2017.