• List of Articles تنش

      • Open Access Article

        1 - A Clarification of Sociopolitical Water-Related Tensions in South Khorasan Studied case: Districts of Esfeden and Affin
           
        Water is considered a major, developmental substructure in different social and economical sectors of countries. Currently, problems regarding this vital substance are among the most important issues in the world. Water scarcity, caused by population growth and water re More
        Water is considered a major, developmental substructure in different social and economical sectors of countries. Currently, problems regarding this vital substance are among the most important issues in the world. Water scarcity, caused by population growth and water requirement to produce food, inherent limitation of water resources particularly in arid and semi-arid areas, excessive withdrawal from resources and poor water management has over time inflicted tensions and challenges on the national and international levels, hence threatening peace and security around the globe. It has also made some problems inevitable, such as evacuation of villages, irregular emigration of villagers to cities, social conflicts among dwellings, and growing political tensions. We can refer , as an instance, to the growing tensions among people from Esfeden City and Affin Village in South Khorasan Province over the past years. Considering the issues above, the main question of the study is, “what contributes to creating and aggravating of conflicts and tensions among these two neighboring regions?” The hypothesis stated is: various factors such as population growth, increasing the land under cultivation, as well as recent droughts have led to development of tensions. Methodology This is, methodologically, a case study within a geographical study framework, and it was primarily conducted with a descriptive-analytic approach. The information and data were gathered from electronic and library sources, and relevant documents, and through interviews with experts, officials and locals. The studied region is located within two counties in the northern part of South Khorasn Province. According to the latest state division map, Esfeden is a city of central Qayenat County, and Affin is a village of Zohan in Zirkouh County. Data & results The Affin River, which supplies part of the irrigating water of the area, originates from Dogerd Heights and Shirkab Heights, 67 km southeast to Birjand, and runs by villages Shirg, Sarjin, Kalat-e-mazar, Baimorgh, Baghestan, Payhan, and Fathabad, down to Affin. The water, which reaches the riverbed south of Affin, runs for 5km before it arrives at a point called division chamber, where it is divided into six equal parts, one part belonging to Affin fields and five other parts belonging to Esfeden fields and plantations. Affin’s share of water goes to Affin fields, while Esfeden’s share of water runs along The Affin River, and at some distance down the village it joins The Shour (salt) River and together they make up the Esfeden Creek. Over the past years, considering water shares and due to the rise of barberry price, the area of cultivated land for annual crops has declined, whereas the allocated land to the barberry gardens has developed. The entire area of aridable land was 227 hectares, which consisted of 138 hectares of gardens and plant nurseries and 89 hectares of fields. Currently, most of the fields have gone under cultivation of barberry trees and the entire land area of gardens has doubled ( up to 260 hectares). About 90 hectares of the gardens is irrigated with water from the river and 170 hectares with water from the qanats. Considering the population growth and increased area of cultivated land in Affin, and in spite of the fact that people of Affin are well attendant of their share of water, however, they assume excess withdrawal of water from the river an unnegotiable right of their own. Particularly in hot seasons and when irrigation is most required, they withdraw water from the river above their allocated share. In addition, because the river bed before the division chamber has been destroyed and subsequently, there is a difference up to about two meters in height, water is not properly directed to the division chamber and, as a result, there is not a proportionate division. This causes less accessable water to reach Esfeden, and inflicts a lot of damage to farmers in Esfeden. According to the experts in the Department of Agriculture, considering the vast area of cultivated land, and high costs of developing gardens, and also the long time prior to the harvest, the estimated damage due to water reduction during flowering seasons, harvest, and at the peak of collecting crops is varied. However, typically, a decline of 5 seconds in 30 liters leads to 10 to 15 percent loss of crops. Conclusion Finally, it was concluded that because of increased demand for water due to the development of cultivated gardens in the region, population growth, and dividing the irrigating water in accordance with inheritance law, the share of the limited water available per person has diminished, and disputes and tensions over possession of water in the districts of Affin and Esfeden has risen. Reduced amount of precipitation and the recent droughts has led to aggravation of water crisis, reduced quota of sustainable water per capita in the region, and rising demands for irrigation. Disagreements and disputes over water in years have inflicted financial damage to farmers, contributing to coldness of relations among people, reducing the farmers’ collaboration to clear the conveying ducts, and maintaining conveying ducts especially after floods. All these issues play a significant role in the reduction of accessible water. Implementing the plan of the concrete wall before the division chamber, directing water to division chamber, and conveying it through pipes from the division chamber to the piped route can help reduce some of the local issues and disputes Manuscript profile
      • Open Access Article

        2 - Determination of stress state and tectonic regime changes in the brittle structures of Chah Yusuf Mountain (East of Gonabad)
        فرهاد  زارعی  Ghaemi  Ghaemi
        In this study, structural elements, such as faults and fractures and their formation mechanisms and relationships with tectonic regime of Chah Yusuf Mountain in East of Gonabad city have been recognized and discussed. Their relation with regional fractures, based on dat More
        In this study, structural elements, such as faults and fractures and their formation mechanisms and relationships with tectonic regime of Chah Yusuf Mountain in East of Gonabad city have been recognized and discussed. Their relation with regional fractures, based on data’s from satellite image process and field data, is also shown. Major faults in this area were identified by using fault plain features such as striations, stretching vein and cumulative steps of minerals that helped us to determine fault mechanisms. In general, faults were oriented in three main directions: 1) Reversed faulting along N90-120˚, 2) Right lateral strike –slip faults along N140-160˚ and 3) Normal faults along N0-15˚. Based on the obtained data and using the inversion method, the orientation of the principal stress axes (σ1، σ2 and σ3) and the ratio of the principal stress differences R in the studied area were analyzed. The results showed two different tectonic regimes in the formation of regional structures: 1) Compressive tectonic regime, major stress along NNE-SSW, which generated structures of folds and reversed faults. 2) Shear tectonic regime, compressive stress along NE_SW and tensile stress line NW-SE, which generated structures such as strike-slip faults, normal faults, vein and tensile fracture. So, the major stress direction in this region is NNE-SSW, which shows its relation to the Late Cenozoic Arabia –Eurasia oblique continental collision. Manuscript profile
      • Open Access Article

        3 - Paleostress analysis of Mansour-Abad area (southeast Rafsanjan - Kerman Province) using Multiple Inversion Method
        لیلا  عبادی  Alavi  Ghassemi
        This study uses multiple inversion method to analyze slip data on shear planes and faults containing slickenlines in different rock units, and evaluates paleostress field in Mansour-Abad area. It was gathered the required kinematic data in 18 stations according to the s More
        This study uses multiple inversion method to analyze slip data on shear planes and faults containing slickenlines in different rock units, and evaluates paleostress field in Mansour-Abad area. It was gathered the required kinematic data in 18 stations according to the stratigraphic age of the rock units. It was used the most important shear sense indicators, including mineral steps, Riedel shears and tension fractures. According to the multiple inversion method, which calculates stress tensor from the inhomogeneous fault data (data without any knowledge of stress field orientation or fault classification), four parameters of stress ellipsoid shape and axes were analyzed. It was found 3 different phases of compression, extension-shear and shear- compression using the phase separation in this method. The maximum principal stress orientation in different locations changes from N24˚ to N162˚ between Cretaceous and Neogene, while the minimum principal stress orientation changes from N79˚ to N116˚. The NW-SE strike of the reverse faults indicates that these faults developed during the activity of compressional phase. During the extensional-shear phase of the activity, local sedimentation occurred in the area. Late shear deformation of area, and change in stress field orientation, resulted in a block rotation between the fractures. Further increase in the rotation caused the fractures to increase in size, and provide space for intrusion of the magma. Manuscript profile
      • Open Access Article

        4 - Paleostress analysis in Bozqush Mountains, northwest Iran
        احد نوری Parisa Amini Sharifi  Moayyed
        Knowledge of the local stress field in a region is important in the structural and affecting factors on structural kinematics studies. Therefore, in this paper after describing the basic theoretical principles of stress inversion method from slickensides, it was used More
        Knowledge of the local stress field in a region is important in the structural and affecting factors on structural kinematics studies. Therefore, in this paper after describing the basic theoretical principles of stress inversion method from slickensides, it was used field measured heterogeneous fault –slips as raw data to determine the average state of the principal stress axes in order to analyze the regional geodynamic situation of this area. The results of the reduced stress tensor from fault-slip measured data, show 21/156، 64/012 and 14/251 states for σ1، σ2 and σ3 axes respectively. The results of analysis of these data show substantial agreement between the determined principal stress axes and recent tectonic research in this region. Manuscript profile
      • Open Access Article

        5 - Seismotectonics of the west of Golestan province, the east of south Caspian region
        Maryam Agh-Atabai Marjan Tourani
        Golestan province is located in one of the seismically active zones of Iran. The seismicity maps of Golestan province show that density of earthquakes in the west is more than the east. In this research, the parameters including b-value, recurrence time and seismic mome More
        Golestan province is located in one of the seismically active zones of Iran. The seismicity maps of Golestan province show that density of earthquakes in the west is more than the east. In this research, the parameters including b-value, recurrence time and seismic moment were studied to investigate the seismicity of the west of Golestan province. The focal mechanism of earthuqakes and field data were used to determine the stress orientations in the study area. The estimated b-value is obtained as 1.24±0.2 which is comparable with the Alborz. Since the northern and southern parts of the study area have different geomorphological and structural characteristics, some of these parameters were calculated for two subdivisions; Dasht-e-Gorgan in the north and foothill in the south. Results of this study show that the earthquakes in the Dasht-e-Gorgan compared to the foothill are smaller with shorter recurrence times. For the foothills, the calculated P-axes using the stress tensor inversion method is found to be subhorizontal with trend N-NNE. For this region, at least two trends, N and NW, is calculated using field data. This result show the change of stress directions during the structural evolution of this area. The calculated p-axes trend for the Dasht-e-Gorgan is NE. In both studied areas, the focal mechanisms of greater earthquakes are consistent with the E-W to NE-SW trend of main faults especially the Khazar fault. But, the smaller events in the Gorgan Plain show a different trend and mechanism. Comparison of these two subdivisions shows that the northern Alborz foothill is more dangerous than the plain. Manuscript profile
      • Open Access Article

        6 - Reconstruction of present-day local stress field affecting the North Tabriz Fault and surrounding areas based on earthquakes focal mechanism by using inversion method
        Ahad Noori Behnam Rahimi
        In this research, present-day tectonic stress field affecting North Tabriz Fault and surrounding areas was reconstructed by using 37 compiled earthquakes focal mechanism from various sources. Triangle diagrams were used to determine the sense of the earthquakes focal me More
        In this research, present-day tectonic stress field affecting North Tabriz Fault and surrounding areas was reconstructed by using 37 compiled earthquakes focal mechanism from various sources. Triangle diagrams were used to determine the sense of the earthquakes focal mechanism. The sense of these data varies from strike-slip to thrust regime. Stress separation process was applied on data set for separation of the various tectonics regimes from a poly-phase system to obtain reduced stress tensors. This was done because most of the data participated in them and reconstructed stress fields completely cover the stresses affecting the region. The results of inversion analysis and internal separation of the data set show three stress regimes acting in this region. Considerably, all three stress regimes have a horizontal pressure stress with NW-SE to NNW-SSE trend. The direction of maximum pressure in each first, second and third regimes is 09/329, 28/310 and 03/138, respectively. In this research, present-day tectonic stress field affecting North Tabriz Fault and surrounding areas was reconstructed by using 37 compiled earthquakes focal mechanism from various sources. Triangle diagrams were used to determine the sense of the earthquakes focal mechanism. The sense of these data varies from strike-slip to thrust regime. Stress separation process was applied on data set for separation of the various tectonics regimes from a poly-phase system to obtain reduced stress tensors. This was done because most of the data participated in them and reconstructed stress fields completely cover the stresses affecting the region. The results of inversion analysis and internal separation of the data set show three stress regimes acting in this region. Considerably, all three stress regimes have a horizontal pressure stress with NW-SE to NNW-SSE trend. The direction of maximum pressure in each first, second and third regimes is 09/329, 28/310 and 03/138, respectively. Manuscript profile
      • Open Access Article

        7 - Difference of in situ stress regime dependent on Structural position and geomechanical characteristics, Case study- Gachsaran and Asmari formations, SW Iran
        Hossein Talebi Seyd Ahmad Alavi Mohamad Reaz Ghasemi Shahram Sherkati
        Estimation of in-situ stress tensor in sedimentary basins using information obtained from exploration and development oil and gas wells during the drilling and logging process may be used for estimation of in-situ stress tensor in sedimentary basins. The in-situ stress More
        Estimation of in-situ stress tensor in sedimentary basins using information obtained from exploration and development oil and gas wells during the drilling and logging process may be used for estimation of in-situ stress tensor in sedimentary basins. The in-situ stress magnitude and orientation and the resulting stress regime around the studied wells have been several application in secondary recovery programs from hydrocarbon reservoirs as well as wellbore stability analysis. In this paper, the magnitude of in-situ stress is estimated by using abovementioned data in some oil wells located in the south west of Iran. Increasing the oil production by hydraulic fracturing design and sand control in the multi-layer reservoirs such as the Marun giant oil field with loose sand horizons and also improving drilling performance in the Gachsaran formation¬ requires knowledge about the prevailing stress conditions. This research, tries to analyze the stress regime of the Asmari and Gachsaran Formations around the selected wells in the Marun and Lali fields using constructed Mechanical Earth Models (MEM) and their differences are discussed. The calculated stress magnitudes in studied wells indicate a significant drop in magnitude of horizontal stresses from the Gachsaran to Asmari reservoirs in the Marun oil field. The magnitudes of the three principal stresses resulted that SHmax is the maximum principal stress and the Shmin is the minimum principal stress, thus a strike-slip stress regime (SHmax>Sv>Shmin) dominates in the Gachsaran sequence and the Asmari formation of the Lali oil field. however, in the Gachsaran formation of Marun giant oil field, stress regime is reverse-strike slip but normal stress regime is dominated in it's Asmari reservoir. The In-situ stress condition indicates that the structural condition and the depth difference of these structures plays an important role in the tectonic stress regime changes. Manuscript profile
      • Open Access Article

        8 - Analysis of stress regime in Shah Deniz oilfields and wellbore stability, in south Caspian Sea basin
        Parvaneh Alizadeh Saeid Mohammad Hassanpour sedghi Ali Kadkhodaie Malek Mohammad  Gity
        Wellbore instability is one of the main problems during drilling of oil and gas wells. Analyzing and wellbore instability prediction is important. In-situ stress measurement and stress regime are important for stability studies. This study was carried out in one of the More
        Wellbore instability is one of the main problems during drilling of oil and gas wells. Analyzing and wellbore instability prediction is important. In-situ stress measurement and stress regime are important for stability studies. This study was carried out in one of the oilfields in the south Caspian basin in Iran. The compressional stress regime in the studied field was determined based on regional stress indicators and larg scale tectonic observations. . This study presented the effect of borehole inclination and azimuth on borehole stability under reverse fault regimes. The magnitude of stresses was determined from measured sonic velocities, density log and predicted pore pressure utilizing the Eaton method. In this study, the modified Lade model have been utilized to perform stability calculation for different inclinations and azimuths. In this study, to perform stability calculation with the use of STABview software is presented. It is shown that drilling wells parallel to maximum in-situ horizontal stress (NE-SW) causes less stability problems. The results of this study could help in the mitigation and/ or prevention of wellbore stability issues in this oilfield. Manuscript profile
      • Open Access Article

        9 - Determining paleo-stress based on the study of discontinuities and folds in Zagros Collision Zone; Case Study: Kermanshah Region
        سپیده  رضابیک عبدالله  سعیدی Mehran Aryan علی  سربی
        The studied zone is in the Northern part of Zagros Suture Zone (Kermanshah). The presence of deep sea sediments, oceanic crust remnants, platform carbonates, igneous and metamorphosed rocks of active margin and carbonate sequence of passive margin that are assembled in More
        The studied zone is in the Northern part of Zagros Suture Zone (Kermanshah). The presence of deep sea sediments, oceanic crust remnants, platform carbonates, igneous and metamorphosed rocks of active margin and carbonate sequence of passive margin that are assembled in the studied area show a compressional tectonic regime from the late Cretaceous up to the present. As a result of convergent regime, a very complicated structural zone is developed. The main purpose of this study is stress characteristic analysis in Zagros Suture Zone (Kermanshah).To recognize and study the arrangement of stress axes a great amount of data were gathered from the folds axial surface and the faults which are appeared within the rocks specially the radiolaritic rocks. The data includes characteristics of fault surface geometry, fault slip and lineation slip. The stress recording patterns for data in this study is Multiple Inverse Method and comparison with stress position by using folds axial surface. By studying folds it was obtained the situation of main stress σ1, σ2 and σ3 respectively as 029, 127, 234 and by using the method Multiple Inverse Method, the situation of main stress is obtained as 059, 304, 194. Based on the investigations in the study area and measurements on Cretaceous rocks, the results show that the main stress direction since Cretaceous up to the present is northeastern with minor changes. The estimations of stress direction were the same in both folds and faults. As a result, the shortening direction has been constant, so the shortening faults all show one direction of stress. Manuscript profile
      • Open Access Article

        10 - -
        rasoul mohsenzadeh
      • Open Access Article

        11 - Wellbore Stability Analysis During Drilling Using Geomechanical Model and FLAC3D Software in Asmari Reservoir, Ahwaz Oil Field
        Mohammad میرانی
        Abstract Oil reservoirs are one of the important sources of energy due to which is caused by specific rock mechanical properties, the ability to maintain hydrocarbon fluids. One of the major problems that are occurred during drilling a well is instability of the well More
        Abstract Oil reservoirs are one of the important sources of energy due to which is caused by specific rock mechanical properties, the ability to maintain hydrocarbon fluids. One of the major problems that are occurred during drilling a well is instability of the wellbore. In order to prevent this difficulty its need to predict stability of the rocks by using geomechanical properties and in-situ stresses. A lack of accurate wellbore stability analysis brings many problems such as borehole washout, breakout, collapse, stuck pipes and drill bits. In the present research work the stability of an oil well located in Asmari reservoir of Ahwaz oil field was stimulated by using numerical software FLAC3D and information obtained from well log curves were evaluated and analyzed in two parts and the results were presented. Mud pressure and mud weight in outset of wellbore plastic flow and also outset of shear failure in wellbore were obtained for 7.5 meter of formation which mainly consists of limestone, marl. Well stability analysis was performed in vertical direction, minimum horizontal stress and maximum horizontal stress. Due to plastic movement and shear failure in wellbore, in first stage the mud pressure occurred is 33 and 26.4 Mpa and the second stage it reaches to 45 and 30 Mpa, respectively.It indicates that tensile failure is in direction of maximum horizontal stress and shear failure in direction of minimum horizontal stress. Subsequently, the result shows that the analysis due to the low mechanical properties of the sandstone layer indicates the maximum amount of displacement and loss. The safe mud window is small in this layer. Manuscript profile
      • Open Access Article

        12 - Determination of In-situ stress in the Marun oilfield’s failure wells
        میثم فارسی مدان مرتضی احمدی کاوه آهنگری جاسم  دشت بزرگی
        Abstract Determination of In-situ stress domain in oilfields is so important for drilling, well completion and petroleum geomechanics. Simply, determination of magnitude and direction of In-situ stress around wellbore is the first step of geomechanical studies and we More
        Abstract Determination of In-situ stress domain in oilfields is so important for drilling, well completion and petroleum geomechanics. Simply, determination of magnitude and direction of In-situ stress around wellbore is the first step of geomechanical studies and wellbore stability particularly. Preliminarily, because of importance of casing collapse problem in the Marun oilfield, the magnitude of in-situ stress is determined. The magnitude of vertical stress (Sv) was in range of 85 to 90 MPa. The minimum horizontal stress (Shmin) determined by some analytical methods. For estimating of maximum horizontal stress (SHmax) domain we used Anderson’s faulting theory and stress polygon. So the magnitude of SHmax was so close to Sv and the faulting regime shows normal/strike slip. Within Gachsaran Formation in depth of collapses because of salty lithology and high pore pressure, magnitude of In-situ stress is so close and it can be assume hydrostatic stress state. Manuscript profile
      • Open Access Article

        13 - Structural Modeling and Estimation of Tectonic Stresses at Lali Oilfield in Dezful Embayment
        Nasrin kianizadeh Behzad Zamani Rahym khadkhodayi Hoseyn Talebi
        Structural geological study is one of the most important stages of an oilfield exploration and production (E&P) program, since a knowledge of existing structures can play a fundamental role in the oilfield development plan. The main purpose of this study is to create More
        Structural geological study is one of the most important stages of an oilfield exploration and production (E&P) program, since a knowledge of existing structures can play a fundamental role in the oilfield development plan. The main purpose of this study is to create three-dimensional (3D) structural models to determine direction of tectonic stresses at Lali oilfield using subsurface geophysical data. The study area is located within the so-called Dezful Embayment (northern Khuzestan Province, Iran). Accordingly, in order to provide a 3D model of the reservoir, geostatistical tools in Petrel Software were utilized. Incorporating density log data into several coded formulations in MS Excel Software, the reservoir had its modulus of elasticity calculated. Subsequently, maximum and minimum horizontal stresses were calculated using poroelastic equations. Fault modeling results showed that, fault dip increases with increasing the depth towards the center of the field. Obtained values of stress using the poroelastic equations show that σ_H>σ_h>σ_v, confirming a regional reverse stress regime, which is consistent with previous studies in this area. Also, the formal stress ratios (Φ = (σ2-σ3) / (σ1-σ3)) obtained from poroelastic equations and inverse analysis method were found to be well-correlated across the area. Finally, average azimuth of the reverse faults on the southern limb (as calculated by Petrel) and the fractures on the limb (as obtained from FMI images and core samples) were found to be N305 and N315, respectively (average = N310). Thus, N040E was inferred to be the average direction of principal stress, i.e. principal stress is mostly directed along a NE-SW axis (perpendicular to the general trend of Zagros Orogeny); this is probably a result of the activities of youngest Zagros orogeny phase. The agreement between the obtained principal stress directions by fractures, faults, and focal mechanism of earthquakes across the World Stress Map (WSM) confirms the validity of this study. Manuscript profile
      • Open Access Article

        14 - -
        HamidReza Sabbaghi Ali Abbasian
      • Open Access Article

        15 - A review of methods for determining contact stress in polymer base gears
        Rasool Molhsenzadeh
        Basically, gears are an evolved form of friction wheels that have teeth added to them to prevent slippage and ensure relative motion uniformity. The use of polymer gears is increasing due to advantages such as corrosion resistance, injection molding capability, operatio More
        Basically, gears are an evolved form of friction wheels that have teeth added to them to prevent slippage and ensure relative motion uniformity. The use of polymer gears is increasing due to advantages such as corrosion resistance, injection molding capability, operation without lubricants and low noise. However, the mechanical strength, thermal resistance and durability of polymer gears are lower than metal gears. The locking mechanism in metal gears is different from polymer gears. Among the important damages that lead to failure of polymer gears is thermal deformation, which does not exist in metal gears. In polymer gears, due to the viscoelastic and plastic nature of polymers, a lot of heat is generated during gear engagement and the temperature increases. An increase in temperature causes the ribs to soften and, as a result, change their shape. Pitting, fatigue and wear are other factors that lead to failure of polymer gears. The contact stress resulting from the torque applied to the gear plays the most important role in the intensity of each of the mentioned delays. Investigating the contact stress in polymer gears, including the challenges of industrialists and researchers, will provide a better understanding for the better design of these types of gears, as well as life expectancy. This research is a review of various methods for determining and checking contact stress, including Hertz numerical model, standard method and finite element method. Manuscript profile
      • Open Access Article

        16 - A review of polymer bonded explosive rheology
        Mahmoud Heydari
        Polymer-bonded explosives are widely used in defense and commercial industries. In this type of explosive, very high amounts of explosive crystals (about 90% by weight) are surrounded by a polymeric binder (about 10%), which leads to a decrease in sensitivity and a sign More
        Polymer-bonded explosives are widely used in defense and commercial industries. In this type of explosive, very high amounts of explosive crystals (about 90% by weight) are surrounded by a polymeric binder (about 10%), which leads to a decrease in sensitivity and a significant increase in safety during application and storage. These mixtures are molded in different ways, such as pressing, casting, extrusion, and injection. Studying the rheology of these mixtures with a high percentage of solid loading leads to finding the appropriate quality control method at different production stages. The first step was to review studies on alternatives to simulating explosive rheological behavior, such as dechlorane, calcium carbonate, sugar, etc. The general behavior of simulated mixtures, such as yield stress, shear rate dependence, time dependence, etc., is compared with original explosive. The results showed that despite the similarity in some rheological behaviors, it is impossible to predict and study all the rheological behaviors of polymer-bonded explosives using simulating materials. This paper discusses factors affecting the rheology of polymer-bonded explosives, such as particle size distribution, modification of explosive crystal surfaces, and plasticizer. A review of scientific sources showed that using a wide distribution of explosive crystal particles compared to a narrow distribution led to a significant reduction in viscosity and dependence on shear rate and time. The absence of strong interactions between crystal particles and polymer binder leads to no observation of quasi-solid behavior even in 85% by weight of explosive crystals such as octogen in hydroxyl-terminated polybutadiene Manuscript profile
      • Open Access Article

        17 - A new look at the rotation of Central Iran: A case study of the Anar fault, east block of the Yazd
        Hamidreza AfkhamiArdakani farzin ghaemi Fariba  Kargaran Bafghi Ahad  Nouri
        The Anar fault in the east of Yazd city, with a north-northwest-south-southeast strike, is a basement fault that separates the Yazd block from the Posht Badam block, and its current activity is a dextral strike-slip with a reverse component. The paleostress analysis was More
        The Anar fault in the east of Yazd city, with a north-northwest-south-southeast strike, is a basement fault that separates the Yazd block from the Posht Badam block, and its current activity is a dextral strike-slip with a reverse component. The paleostress analysis was done on this fault in order to obtain the tectonic history of central Iran in the period from Devonian to Cretaceous. After analyzing 110 fault data in 13 stations of 2 tectonic phases, it was determined that the maximum stress obtained is between the azimuths of 90 to 110 and 190 to 220 and the angle of stress direction changes in the period from Devonian to Cretaceous is 130 degrees. Based on the studies on the barite veins and the dextral displacements that were seen on them, the separation of the stress phases was done, which indicates that the NNE stress direction is older. Further, according to the previous studies of sedimentology and tectonics in central Iran, it was concluded that the cause of this change in tension was the movement towards the northeast along with the 130 degree counter-clockwise rotation of central Iran. Manuscript profile