Robust Tracking by Using Measure Theory
Subject Areas : electrical and computer engineeringA. Zare 1 , A. Khaki-Sedigh 2 , A. Vahidian 3
1 - دانشگاه آزاد اسلامی، واحد گناباد
2 -
3 -
Keywords: Measure theoryoptimum controllinear programmingrobust controlrobust tracking,
Abstract :
This paper presents two new approaches for robust step tracking in structure uncertain nonlinear systems. The problem is first restated as a non linear optimal control infinite horizon problem, then with a suitable change of variable, the time interval is transfer to the finite horizon [0 1). This change of variable, poses a time varying problem. This problem is then transfer to measure space, and it is shown that an optimal measure must be determined which is equivalent to a linear programming problem with infinite dimension. Then, using finite horizon approximations, the optimal control law is determined as a piece wise constant function. Simulations are provided to show the effectiveness of the proposed methodology
[1] D. A. Wilson and J. E. Rubio, "Existence of optimal control for the diffusion equation," J. of Optimization Theory and Its Applications, vol. 22, pp. 91-100, 1977.
[2] J. E. Robio, Control and Optimization the Linear Treatment of Nonlinear Problems, Manchester University Press, 1986.
[3] A. V. Kamyad, J. E. Rubio, and D. A. Wilson, "Optimal control of multidimensional diffusion," J. of Optimization Theory and Applications, vol. 70, pp. 191-209, 1991.
[4] M. H. Farahi, J. E. Rubio, and D. A. Wilson, "The optimal control of the linear wave equation," Int. J. Control, vol. 63, no. 5, pp. 833-848, 1995.
[5] J. E. Rubio, "The global control of nonlinear elliptic equations," J. of Franklin Institute, 330, pp. 29-35, 1993.
[6] A. P. Sage and C. White, Optimum Systems Control, Prentice-Hall, pp. 33-48, 1977.
[7] S. Effati, A. V. kamyad, and M. H. Farahi, "A new method for solving the nonlinear second order boundary value differential equations," Korean J. Comput. & Appl. Math., vol. 7, no. 1,pp. 183-193, 2000.
[8] آصف زارع ، علي خاكي صديق و علي وحيديان كامياد، "كاربرد تئوري اندازه در حل مسائل كنترل بهينه غير خطي با افق بينهايت ،" مجموعه مقالات هشتمين. كنفرانس مهندسي برق ايرا ن، دانشگاه صنعتي اصفهان ، 1379.
[9] L. S. Pontryagin and V. G. Boltyanski, The Mathematical Theory of Optimal Processes, Wiley Inter-science, New York, 1962
[10 ] محمد رضا شاطريان ، كاربرد تئوري انداز ه در كنترل بهينه سيستمهاي فشرده و پارامتر توزيعي، پايان نامه كارشناسي ارشد، دانشگاه فردوسي ، 1373.
[11] W. Rudin, Real and Complex Analysis, Mathematic University of Wisconsin, Madison, 1966.
[12] H. L. Royden, Real Analysis, Macmillan Company, New York,1963.
[13] J. G. Ziegler and N. B. Nichols, "Optimum setting for automatic controllers," Trans. ASME, vol. 15, 1942.
[14] S. Effati, A. V. Kamyad, and R. A. Kamyabi-Gol, "The infinite-horizon optimal control problems," Journal for Analysis and Its App., vol. 19, no. 1, pp. 269-278, 2000.