• List of Articles Tumor

      • Open Access Article

        1 - The effect of 12 weeks aerobic training on TNF-α levels in the hippocampus and prefrontal cortex, and depression in rats with Alzheimer's disease
        Ehsan Mohammadikia Fereshteh Mohebbi Hossein Babaei
        Background: Exercise training plays an important role in combating Alzheimer's disease. Present study aimed to investigate the effect of 12 weeks aerobic training on the levels of tumor necrosis factor alpha (TNF-α) in the hippocampus and prefrontal cortex, and also dep More
        Background: Exercise training plays an important role in combating Alzheimer's disease. Present study aimed to investigate the effect of 12 weeks aerobic training on the levels of tumor necrosis factor alpha (TNF-α) in the hippocampus and prefrontal cortex, and also depression in rats with Alzheimer's disease. Methods: The 40 Wistar rats were divided into four equal groups including saline (S), saline +training (ST), training +STZ (AT) and STZ (A). Alzheimer's was induced by injection of 3 mg/kg streptozotocin (STZ) into the ventricles of brain. The aerobic training program (each session lasted 30 minutes with 10-12 meters per minute speed) performed for 12 weeks and five sessions per week on a treadmill. The 48 hours after last training session, brain tissue (hippocampal and prefrontal cortex areas) was removed and TNF-α levels were measured by ELISA method. Data were evaluated using the statistical method of analysis of variance at a significant level (P <0.05). Result: TNF-α levels in the hippocampus were significantly higher in group A compared to S (p= 0.010), ST (p= 0.014) and AT (p= 0.041) groups. Moreover, no significant change was observed for TNF-α levels in prefrontal cortex in different groups (p= 0.276). In addition, a significant increase in inactivity duration (FST) was observed in group A compared to other groups (p <0.05) and also a significant decrease in sucrose preference (SPT) was observed in group A compared to other groups. (p<0.05). Conclusion: The present study findings indicated that, the positive effects of aerobic training in rats with Alzheimer's disease are exerted partly by modulating the levels of inflammatory factors such as TNF-α in the brain especially the hippocampus. Manuscript profile
      • Open Access Article

        2 - Investigating the Particle Size of Chitosan-Based Drug Carriers for the Release of 5-Fluorouracil Antitumor Drug
        Mohammad Hossein Karami Majid Abdouss Mandana Karami
        Chitosan has been widely used as a natural biopolymer. The modification of chitosan for various applications can be easily achieved due to the abundant active groups (NH2 and OH) in the main chain. Controlled drug release makes the drug release rate predictable and repe More
        Chitosan has been widely used as a natural biopolymer. The modification of chitosan for various applications can be easily achieved due to the abundant active groups (NH2 and OH) in the main chain. Controlled drug release makes the drug release rate predictable and repeatable for prolonged release drugs. Drug delivery systems prepared from nanoparticles show several advantages, including improved efficiency and reduced toxicity. Using drug delivery systems based on nanoparticles loaded with anti-cancer agents is an effective method for targeting cancer cells. These systems, with the ability to penetrate better inside the cells, combine the drug in a targeted way in the cells. Also, due to the enhanced permeability and retention (EPR), the possibility of better accumulation of drugs in the tumor site is provided. In most researches, the suitable particle size for the targeted release of drug nanocarriers has been reported to be less than 300 or 200 nm. This amount is suitable for the application of drug release for diffusion among tissues and causes the effect of increasing permeability. In this study, for the first time, it examines and analyzes the particle size and zeta potential (surface charge) of chitosan-based nanocarriers through dynamic light scattering and electron microscope tests in improving the release of the antitumor drug, 5-fluorouracil. Manuscript profile
      • Open Access Article

        3 - Investigating the Particle Size of Chitosan-Based Drug Carriers for the Release of 5-Fluorouracil Antitumor Drug
        Mohammad Hossein Karami Majid Abdouss Mandana Karami
        Chitosan has been widely used as a natural biopolymer. The modification of chitosan for various applications can be easily achieved due to the abundant active groups (NH2 and OH) in the main chain. Controlled drug release makes the drug release rate predictable and repe More
        Chitosan has been widely used as a natural biopolymer. The modification of chitosan for various applications can be easily achieved due to the abundant active groups (NH2 and OH) in the main chain. Controlled drug release makes the drug release rate predictable and repeatable for prolonged release drugs. Drug delivery systems prepared from nanoparticles show several advantages, including improved efficiency and reduced toxicity. Using drug delivery systems based on nanoparticles loaded with anti-cancer agents is an effective method for targeting cancer cells. These systems, with the ability to penetrate better inside the cells, combine the drug in a targeted way in the cells. Also, due to the enhanced permeability and retention (EPR), the possibility of better accumulation of drugs in the tumor site is provided. In most researches, the suitable particle size for the targeted release of drug nanocarriers has been reported to be less than 300 or 200 nm. This amount is suitable for the application of drug release for diffusion among tissues and causes the effect of increasing permeability. In this study, for the first time, it examines and analyzes the particle size and zeta potential (surface charge) of chitosan-based nanocarriers through dynamic light scattering and electron microscope tests in improving the release of the antitumor drug, 5-fluorouracil. Manuscript profile