Investigating the Particle Size of Chitosan-Based Drug Carriers for the Release of 5-Fluorouracil Antitumor Drug
Subject Areas :Mohammad Hossein Karami 1 , Majid Abdouss 2 , Mandana Karami 3
1 - Department of Chemistry, Amirkabir University of Technology
2 - Department of Chemistry, Amirkabir University of Technology, Tehran P.O. Box 15875-4413, Tehran, Iran
3 - Polymer and Petrochemical Research Institute, Tehran, Iran, PO Box: 14975/112
Keywords: Chitosan, Nanocarrier, 5-Fluorouracil, Tumor, Particle Size,
Abstract :
Chitosan has been widely used as a natural biopolymer. The modification of chitosan for various applications can be easily achieved due to the abundant active groups (NH2 and OH) in the main chain. Controlled drug release makes the drug release rate predictable and repeatable for prolonged release drugs. Drug delivery systems prepared from nanoparticles show several advantages, including improved efficiency and reduced toxicity. Using drug delivery systems based on nanoparticles loaded with anti-cancer agents is an effective method for targeting cancer cells. These systems, with the ability to penetrate better inside the cells, combine the drug in a targeted way in the cells. Also, due to the enhanced permeability and retention (EPR), the possibility of better accumulation of drugs in the tumor site is provided. In most researches, the suitable particle size for the targeted release of drug nanocarriers has been reported to be less than 300 or 200 nm. This amount is suitable for the application of drug release for diffusion among tissues and causes the effect of increasing permeability. In this study, for the first time, it examines and analyzes the particle size and zeta potential (surface charge) of chitosan-based nanocarriers through dynamic light scattering and electron microscope tests in improving the release of the antitumor drug, 5-fluorouracil.
1. Kazemi S., Pourmadadi M., Yazdian F., Ghadami A., The Synthesis and Characterization of Targeted Delivery Curcumin Using Chitosan-Magnetite-Reduced Graphene Oxide as Nano-Carrier, Int J Biol Macromol, 186,554-562, 2021.
2. Pourmadadi M., Ahmadi MJ., Abdouss M., Yazdian F., Rashedi H., Navaei-Nigjeh M., Hesari Y., The Synthesis and Characterization of Double Nanoemulsion for Targeted Co-Delivery of 5-Fluorouracil and Curcumin Using pH-Sensitive Agarose/Chitosan Nanocarrier, J Drug Deliv Sci Technol,70,102849,2022.
3. Omrani Z., Pourmadadi M., Yazdian F., Rashedi H., Preparation and Characterization of PH-Sensitive Chitosan/Starch/MoS2 Nanocomposite For Control Release of Curcumin Macromolecules Drug Delivery; Application in The Breast Cancer Treatment, Int J Biol Macromol, 250,125897, 2023.
4. Shakouri S., Pourmadadi M., Abdouss M., Rahdar A., Pandey S., pH-responsive Double Emulsion System for Targeted Anticancer Therapy Based on Polyacrylic Acid-Polyvinyl Pyrrolidone Containing Carbon Nanotubes for 5-Fluorouracil As an Anticancer Medication, Inorg Chem Commun, 158(Part 1),111494,2023.
5. Zoghi M., Pourmadadi M., Yazdian F., Navaei Nigjeh M., Rashedi H., Sahraeian R., Synthesis and Characterization of Chitosan/Carbon Quantum Dots/Fe2O3 Nanocomposite Comprising Curcumin For Targeted Drug Delivery in Breast Cancer Therapy, Int J Biol Macromol, 249,125788,2023.
6. EshaghiMM., Pourmadadi M., Rahdar A., Díez-Pascual AM., Improving Quercetin Anticancer Activity Through A Novel Polyvinylpyrrolidone/Polyvinyl alcohol/TiO2 Nanocomposite, J Drug Deliv Sci Technol, 81,104304, 2023.
7. Najafabadi AP., Pourmadadi M., Yazdian F., Rashedi H., Rahdar A., Díez-Pascual AM., pH-Sensitive Ameliorated Quercetin Delivery Using Graphene Oxide Nanocarriers Coated With Potential Anticancer Gelatin-Polyvinylpyrrolidone Nanoemulsion With Bitter Almond Oil, J Drug Deliv Sci Technol, 82,104339,2023.
8. Rahmani E., Pourmadadi M., Ghorbanian SA., Yazdian F., Rashedi H., Navaee M., Preparation of a PH-Responsive Chitosan-Montmorillonite-Nitrogen-Doped Carbon Quantum Dots Nanocarrier For Attenuating Doxorubicin Limitations in Cancer Therapy, Eng Life Sci. ,22,634-649,2022.
9. Abdouss A., Pourmadadi M., Zahedi P., Abdouss M., Yazdian F., Rahdar A., Díez-Pascual AM, Green Synthesis of Chitosan/Polyacrylic Acid/Graphitic Carbon Nitride Nanocarrier As a Potential PH-Sensitive System for Curcumin Delivery to MCF-7 Breast Cancer Cells, Int J Biol Macromol, 242(Part3),125134, 2023.
10. Pourmadadi M., Ahmadi MJ., Yazdian F., Synthesis of A Novel PH-Responsive Fe3O4/Chitosan/Agarose Double Nanoemulsion As a Promising Nanocarrier with Sustained Release of Curcumin to Treat MCF-7 Cell Line, Int J Biol Macromol, 235,123786,2023.
11. Bayat F., Pourmadadi M., Eshaghi MM., Improving Release Profile and Anticancer Activity of 5-Fluorouracil for Breast Cancer Therapy Using a Double Drug Delivery System: Chitosan/Agarose/γ-Alumina Nanocomposite@Double Emulsion, J Clust Sci ,34(5),2565-2577,2023.
12. Rajaei M., Rashedi H., Yazdian F., Navaei-Nigjeh M., Rahdar A., Díez-Pascual AM., Chitosan/Agarose/Graphene Oxide Nanohydrogel As Drug Delivery System of 5-Fluorouracil in Breast Cancer Therapy, J Drug Deliv Sci Technol, 82,104307,2023.
13. Pourmadadi M., Darvishan S., Abdouss M., Yazdian F., Rahdar A., Díez-Pascual AM., PH-Responsive Polyacrylic Acid (PAA)-Carboxymethyl Cellulose (CMC) Hydrogel Incorporating Halloysite Nanotubes (HNT) For Controlled Curcumin Delivery, Ind Crops Prod ,197,116654,2023.
14. Ostovar S., Pourmadadi M., Shamsabadipour A., Mashayekh P., Nanocomposite of Chitosan/Gelatin/Carbon Quantum Dots As a Biocompatible and Efficient Nanocarrier For Improving the Curcumin Delivery Restrictions to Treat Brain Cancer, Int J Biol Macromol, ,242(Part 3),124986,2023.
15. Gerami AE, Pourmadadi M, Fatoorehchi H, Yazdian F, Rashedi H, Nigjeh MN. Preparation of PH-Sensitive Chitosan/Polyvinylpyrrolidone/α-Fe2O3 Nanocomposite For Drug Delivery Application: Emphasis on Ameliorating Restrictions, Int J Biol Macromol, 173,409-420,2021.
16. Samadi A., Pourmadadi M., Yazdian F., Rashedi H., Navaei-Nigjeh M., Eufrasio-da-silva T., Ameliorating Quercetin Constraints in Cancer Therapy with PH-Responsive Agarose-Polyvinylpyrrolidone-Hydroxyapatite Nanocomposite Encapsulated in Double Nanoemulsion, Int J Biol Macromol, 182,11-25,2021.
17. Ematollahi E., Pourmadadi M., Yazdian F., Fatoorehchi H., Rashedi H., Navaei Nigjeh M., Synthesis and Characterization of Chitosan/Polyvinylpyrrolidone Coated Nanoporous γ-Alumina As a pH-Sensitive Carrier for Controlled Release of Quercetin, Int J Biol Macromol, 183,600-613,2021.
18. Darvishan S., Pourmadadi M., Abdouss M., Mazinani S., Yazdian F., Rahdar A., Díez-Pascual AM., Gamma Alumina Coated-PAA/PVP Hydrogel As Promising Quercetin Nanocarrier: Physiochemical Characterization and Toxicity Activity, J Drug Deliv Sci Technol,84,104500, 2023.
19. Pourmadadi M., Aslani A., Abdouss M., Synthesis and Characterization of Biological Macromolecules Double Emulsion Based on Carboxymethylcellulose/Gelatin Hydrogel Incorporated with ZIF-8 As Metal Organic Frameworks for Sustained Anti-Cancer Drug Release. Int J Biol Macromol, 243,125168,2023.
20. jalli N., Pourmadadi M., Yazdian F., Rashedi H., Navaei-Nigjeh M., Díez-Pascual AM., Chitosan/Gamma-Alumina/Fe3O4@5-FU Nanostructures As Promising Nanocarriers: Physiochemical Characterization and Toxicity Activity, Molecules, 27,5369,2022.
21. Darvishan S., Pourmadadi M., Abdouss M., Mazinani S., Yazdian F., Rahdar A., Díez-Pascual AM,. Gamma alumina coated-PAA/PVP Hydrogel As Promising Quercetin Nanocarrier: Physiochemical Characterization and Toxicity Activity, J Drug Deliv Sci Technol, 84,104500,2023.
22. Parvaneh S., Pourmadadi M., Abdouss M., Pourmousavi SA., Yazdian F., Rahdar A., Díez-Pascual AM., Carboxymethyl Cellulose/Starch/Reduced Graphene Oxide Composite As a PH-Sensitive Nanocarrier For Curcumin Drug Delivery, Int J Biol Macromol,241,124566,2023.
23. Eshaghi M., Pourmadadi M., Rahdar A., Díez-Pascual AM., Novel Carboxymethyl Cellulose-Based Hydrogel with Core–Shell Fe3O4@SiO2 Nanoparticles for Quercetin Delivery,Materials,15,8711,2022.
24. Ahmadi MJ., Pourmadadi M., Ghorbanian SA., Yazdian F., Rashedi H., Ultra PH-Sensitive Nanocarrier Based on Fe2O3/Chitosan/Montmorillonite for Quercetin Delivery, Int J Biol Macromol,191,738-745, 2021.
25. Haseli S., Pourmadadi M., Samadi A., A Novel pH-Responsive Nanoniosomal Emulsion for Sustained Release of Curcumin From a Chitosan-Based Nanocarrier: Emphasis on the Concurrent Improvement of Loading, Sustained Release, and Apoptosis Induction, Biotechnol Prog, 38(5), 3280,2022.
26. Sabzini M., Pourmadadi M., Yazdian F., Khadiv-Parsi P., Rashedi H., Development of Chitosan/Halloysite/gGraphitic‑Carbon Nitride Nanovehicle for Targeted Delivery of Quercetin to Enhance Its Limitation in Cancer Therapy: An in Vitro Cytotoxicity Against MCF-7 Cells. Int J Biol Macromol,226,159-171,2022.
27. Karami MH., Pourmadadi M., Abdouss M., Kalaee MR., Moradi O., Rahdar A., Díez-Pascual AM., Novel Chitosan/γ-Alumina/Carbon Quantum Dot Hydrogel Nanocarrier For Targeted Drug Delivery, Int J Biol Macromol, 251,126280, 2023.
28. Karami MH., Abdouss M., Kalaee M.R., MoradiO., A Review of Hydrogels Containing Fibers in Drug Delivery Systems: A Review Study, Iran polymer technology, research and development, In Press,2023.
29. Karami MH, Abdouss M, Kalaee M, Moradi O. Chitosan-Based Nanocarriers For The Release Of The Anticancer Drug Curcumin: A Review, Nashrieh Shimi va Mohandesi Shimi Iran, In Press,2023.
30. Karami MH.,Abdouss M., Kalaee M.R., MoradiO., Application of Hydrogel Nanocomposites in Biotechnology: A Review Study, Iran polymer technology, research and development, In Press,2023.
31. Karami M., Abdouss M., Kalaee M., Moradi O., Investigating the Antibacterial Properties of Chitosan Nanocomposites Containing Metal Nanoparticles For Using in Wound Healings: A Review Study,Basparesh, InPress ,2023.
32. Karami M. H., Abdouss M., Kalaee M., MoradiO. The Application of Chitosan-Based Nanocarriers in Improving the Release of The Anticancer Drug Quercetin: A Review Study, Nano World, 19(70), 21-11,2023.
33. Zhang Z., He Z., Liang R., Ma Y., Huang W., Jiang R., Fabrication of a Micellar Supramolecular Hydrogel for Ocular Drug Delivery, Biomacromolecules, 17,798–807,2016.
34. Satarkar NS., Biswal D., Hilt JZ., Hydrogel Nanocomposites: A Review of Applications As Remote Controlled Biomaterials, Soft Matter, 6,2364 -71,2010.
35. Sun X., Liu C., Omer AM., Lu W., Zhang S., Jiang X., PH Sensitive ZnO/Carboxymethyl Cellulose/Chitosan Bionanocomposite Beads for Colon-Specific Release of 5-Fluorouracil, Int J Biol Macromol, 128,468-79,2019.
36. Gholamali I., Hosseini SN., Alipour E., Yadollahi M.,Preparation and Characterization of Oxidized Starch/CuO Nanocomposite Hydrogels Applicable in A Drug Delivery System, Starch/Stärke, 71(3-4),1800118,2019.
37. Meenach SA., Shapiro JM., Hi l t JZ., Anderson KW., Characterization of PEG-Iron Oxide Hydrogel Nanocomposites for Dual Hyperthermia and Paclitaxel Delivery, J Biomater Sci Polym Ed, 24,1112–26,2013.
38. Zhao F., Yao D., Guo R., Deng L., Dong A., Zhang J.,Composites of Polymer Hydrogels and Nanoparticulate Systems for Biomedical and Pharmaceutical Applications, Nanomaterial,5,2054 - 130,2015.
39. Sannino A., Demitri C., Madaghiele M., Biodegradable Cellulosebased Hydrogels: Design and Spplications, Material, 2,353- 73,2009.
40. Ma J., Li X., Bao Y., Advances in Cellulose-Based Superabsorbent Hydrogels,RSC Adv, 5,59745-57,2015.
41. Lombardo D., KiselevMA., CaccamoMT.,Smart nanoparticles for drug delivery application: development of versatile nanocarrier platforms in biotechnology and nanomedicine, J Nanomed, 2019,1-29,2019.
42. HeM., Zhao Y., Duan J.,Wang Z., ChenY., Zhang L., Fast Contact of Solid-Liquid Interface Created High Strength Multi-Layered Cellulose Hydrogels with Controllable Size, ACS Appl Mater Interfaces, 6(3),1872–8,2014.
43. Qiu X., Hu S., Smart Materials Based on Cellulose: A Review of The Preparations, Properties, and Applications, Material, 6,738- 81,2013.
44. Alipour H., Koosha M., Sarraf Shirazi M.J., and Jebali A., Modern Commercial WoundDressings and Introducing New Wound Dressings for Wound Healing: A Review, Basparesh, 6,65-80, 2017.
45. Chouhan D., Dey N., Bhardwaj N., and Mandal B.B., Emerging and Innovative Approachesfor Wound Healing and Skin Regeneration: Current Status and Advances, Biomaterials, 216,119267, 2019.
46. Yang J.A., Yeom J., Hwang B.W., Hoffman A.S., and Hahn S.K., In Situ Forming InjectableHydrogels for Regenerative Medicine, Prog. Polym. Sci, 39, 1973-1986, 2014.
47. Kamoun E.A., Kenawy E.-R.S., and Chen X., A Review on Polymeric Hydrogel Membranesfor Wound Dressing Applications: PVA-Based Hydrogel Dressings, J. Am. Acad. Derm, 8, 217-233, 2017.
48. Zahedi P., Rezaeian I., RanaeiSiadat S.O., Jafari S.H., and Supaphol P., A Review on WoundDressings with an Emphasis on Electrospun Nanofibrous Polymeric Bandages, Polym. Adv.Technol, 21, 77-95, 2010.
49. Wood R., Williams R., and Hughes L., Foam Elastomer Dressing in the Management of penGranulating Wounds: Experience with 250 Patients, J. Brit. Surg, 64, 554-557, 1977.
50. Ruel-Gariepy E. and Leroux J.-C., In Situ Forming Hydrogels-Review of TemperatureSensitive Systems, Europ. J. Pharm. Biopharm, 58, 409-426, 2004.