Ore-forming fluid source and effective parameters in the gold deposition at the Dashkasan deposit (NE Qorveh): structure, microthermometry and O-H stable isotopic evidences
Subject Areas :Mohammad Moradi 1 , zahra Alaminia 2 , Ebrahim Tale Fazel 3 , Reza Alipoor 4
1 -
2 -
3 -
4 -
Keywords: Fault, Fluid inclusion, O-H Isotopes, Dashkasan.,
Abstract :
The Takab-Qorveh magmatic lineament between the Urumieh-Dokhtar and the Sanandaj-Sirjan zones contains important gold mines such as Dashkasan and Zarshuran. The Dashkasan deposit is located in the Kurdistan province and is one of the largest gold deposits in the Middle East domain. The gold is mainly hosted by porphyritic dacite and breccia. In spite of detailed previous studies, there is still debate regarding the genesis of the Dashkasan. Herein, this study present the source and evolution of the mineralizing fluids using the fluid inclusion and stable isotopic investigations. At Dashkasan, the breccia and mineralization are constrained by the steep NNE-SSW-trending faults. Alteration zones on the surface are phyllic, silicification, tourmalinization, argillic and minor propylitic. Sulfide minerals consist of pyrite, marcasite, arseno-pyrite, stibnite, chalcopyrite and to lesser amounts of bornite, sphalerite and galena associated with quartz, tourmaline, sericite, calcite and chalcedony. Result of microthermometry measurements shows a range of homogenization temperatures between 183-260 °C with salinities of 15.97 to 17.06 wt % NaCl equiv. The oxygen isotope composition of fluid in quartz ranges from 6.6 to 9.9 ‰, while, the tourmaline has δ18Ofluid values are in the ranges of 8.5 to 12.3‰. Also, the δDfluid values of the quartz and tourmaline ranges between -51 to -81 and -93 to -111‰, respectively. Integrating with previous studies, all these data, suggest a migration from a porphyry gold system (stage-I) with a magmatic source to a low-sulphidation epithermal (stage-III). Stage-II occurred simultaneously with the collapse and eruption of crater.
اکبرپور، م ر.، 1370. نگرشی بر مطالعات زمینشناسی و معدنی در کانسار آنتیموان داشکسن و بهارلو ناحیه قروه، گزارش داخلی اداره کل معادن و فلزات کردستان، 73.
- بهارفیروزی، خ.، خاکزاد، ا.، نظری، ح. و امامی، م. ه.، 1394. نقش ساختارهای تراکششی در جایگیری پهنه¬های سیلیسی طلادار در جنوب باختر سبلان، شمال باختر ایران، علوم زمین، 96، 129-140.
- خان¬نظر، ن ه.، جلالی، ا.، سعیدی، ع.، هلمی، ف.، مهتات، ت.، بهره، م.، قائمی. ج.، ظهراب، ی. و هدادان، م.، 1394. نقشه زمینشناسی 1:100000 کوهین، سازمان زمینشناسی و اکتشافات معدنی کشور، تهران، ایران.
- راستاد، ا.، نیرومند، ش. ا.، امامی، م ه. و رشید نژاد عمران، ن ا.، 1379. خاستگاه کانسار آنتیموان، آرسنیک و طلا در مجموعه ولکانوپلوتونیک داشکسن (خاور قروه، استان کردستان)، علوم زمین، 37-38، 23-2.
- کیمیاقلم، ج.، 1364. گزارش اکتشافات ژئوفیزیکی معدن آنتیموان داشکسن – قروه، سازمان زمینشناسی.
- لومار کانسار، 1372. بررسی زمینشناسی و تلفیق آن با اطلاعات اکتشافی ژئوفیزیکی و حفاری برای ارزیابی کانی سازی در کانسار آنتیموان داشکسن و بهارلو، 24.
- مرادی، م.، 1397. بررسی کانی¬شناسی و توزیع ژئوشیمیایی طلا در کانسنگ¬های سولفیدی و اکسیدی کانسار داشکسن، شرق قروه، پایان¬نامه کارشناسی ارشد دانشگاه اصفهان، 140.
- معانی جو، م.، پوینده، ن.، سپاهی گرو، ع ا. و دادفر، ث.، 1393. نقشهبرداری مناطق دگرسانی معدن طلای اپی¬ترمال داشکسن (ساری گونای). علوم زمین، 95-104.
- معین¬وزیری، ح.، 1375. دیباچه¬ای بر ماگماتیسم ایران، دانشگاه تربیتمعلم، 440.
- حیدری، س. م.، قادری، م. و کوهستانی، ح.، 1396. کانه زایی طلای اپی ترمال با میزبان رسوبی عربشاه، جنوب خاور تکاب، علوم زمین، 105، 282-265.
- عبدی، قربانعلی.، 1375. بررسی پترولوژیکی سنگهای آتشفشانی شمال شرق قروه (کردستان)، پایاننامه کارشناسی ارشد دانشگاه شهید بهشتی، 198.
- Asadi, H.H., Voncken, J.H.L. and Hale, M., 1999. Invisible gold at Zarshuran, Iran. Economic geology, 94, 1367-1374.
- Benning, L.G. and Seward, T.M.., 1996. Hydrosulphide complexing of Au (I) in hydrothermal solutions from 150–400°C and 500–1500 bars. Geochimica et Cosmochimica Acta, 60, 1849–1871.
- Burruss, R.C., 1981. Analysis of phase equilibria in C–O–H–S fluid inclusions. Mineralogical Association of Canada Short Course Handbook, 6, 39–74.
- Buchholz, P., Herzig, P., Friedrich, G. and Frei, R., 1998. Granite-hosted gold mineralisation in the Midlands greenstone belt: a new type of low-grade large scale gold deposit in Zimbabwe. Mineralium Deposita, 33, 437–460.
- Chen, vY.J., Pirajno, F., Li, N., Guo, D.S. and Lai, Y., 2009. Isotope systematics and fluid inclusion studies of the Qiyugou breccia pipe-hosted gold deposit, Qinling Orogen, Henan province, China: Implications for ore genesis. Ore Geology Reviews, 35, 245–261.
- Clayton, R.N. and Mayeda, T.K., 1963. The use of bromine pentafluoride in the extraction of oxygen from oxides and silicates for isotopic analysis. Geochimica et Cosmochimica Acta, 27, 43-52.
- Cooke, D.R., Deyell, C.L., Waters, P.J., Gonzales, R.I. and Zaw, K., 2011. Evidence for magmatic-hydrothermal fluids and ore-forming processes in epithermal and porphyry deposits of the Baguio district. Philippinesو Economic Geology, 106, 1399–1424.
- Daliran, F., Hofstra, A., Walther, J., and Stuben, D., 2002, Agdarreh and Zarshuran SRHDG deposits, Takab region, NW-Iran [abs.]: Geological Society of America Abstracts with Programs,34, 141.
- Davies, A.G.S., Cooke, D.R., Gemmell, J.B. and Simpson, K.A., 2008. Diatreme breccias at the Kelian gold mine, Kalimantan, Indonesia: precursors to epithermal gold mineralization. Economic Geology, 103, 689-716.
- Giggenbach, W.F., 1992. Magma degassing and mineral deposition in hydrothermal systems along convergent plate boundaries. Economic Geology, 87, 1927-1944.
- Groves, D.I., Condie, K.C., Goldfarb, R.J., Hronsky J.M.A. and Vielreicher, R.M., 2005. Secular changes in global tectonic processes and their influence on the temporal distribution of gold-bearing mineral deposits. Economic Geology, 100, 203–224.
- Hayashi, K. and Ohmoto, H., 1991. Solubility of gold in NaCl- and H2S bearing aqueous solutions at 250–350°C. Geochim Cosmochim Acta, 55, 2111–2126.
- Hedenquist, J.W. and Lowenstern, J.B., 1994. The role of magmas in the formation of hydrothermal ore deposits. Nature, 370, 490-519.
Hedenquist, J.W., Arribas, A., Jr. and Gonzalez-Urein, E., 2000. Exploration for epithermal gold deposits. Reviews in Economic Geology, 13, 45–77.
- Hou, W.R., Nie, F.J., Zhang, C.G., Xu, B., Li, W., Zhao, G.M. and Meng, J.J., 2014. Study on the geological characteristics and metallogenesis of the Hadamengou gold deposit in Inner Mongolia. Acta Geol. Sin. 88, 1549–1661 (in Chinese with English abstract).
- Kelley, D. K. and Ludington, S., 2002. Cripple Creek and other alkaline-related gold deposits in the southern Rocky Mountains, USA: influence of regional tectonics. Mineralium Deposita 37, 38-60.
- Hoefs, J., 2015. Stable Isotope Geochemistry, seventh edition, Springer International Publishing, Switzerland.
- Kotzer, T.G., Kyser, T.K., King, R.W. and Kerrich, R., 1993. An empirical oxygen- and hydrogen-isotope geothermometer for quartz-tourmaline and tourmaline-water. Geochimica et Cosmochimica Acta, 57, 3421-3426.
- Kouhestani, H., Ghaderi, m., Zaw, K., Meffer, S. and Hashem Emami, M., 2012. Geological setting and timing of the Chah Zard breccia-hosted epithermal gold-silver deopsit in the Tethyan belt of Iran. Mineralium Deposite, 47, 425-440.
- Kyser, T.K. and Kerrich, R., 1991. Stable isotope geochemistry: A Tribute to Samuel Epstein, 409-422.
- Lang, J.R. and Baker, T., 2001. Intrusion-related gold systems: the present level of understanding. Mineralium Deposita, 36, 477–489.
- Lorenz, V., 1973. On the formation of maars: Bulletin of volcanology, 37, 183-204.
- Martin, U., Németh, K., Lorenz, V. and White, J.D.L., 2007. Introduction: Maar-diatreme volcanism: Journal of Volcanology and Geothermal Research, 159, 1–3.
- Lottermoser, B.G., 1990. Rare earth element and heavy-metal behaviour associated with the epithermal gold deposit on Lihir Island, Papua New Guinea. Journal of Volcanology and Geothermal Research, 40, 269– 289.
- Mikucki, E.J., 1998. Hydrothermal transport and depositional processes in Archaean lode-gold systems: a review. Ore Geology Reviews, 13, 307–321.
- Mikucki, E.J. and Ridley, J.R., 1993. The hydrothermal fluid of Archean lode–gold deposits at different metamorphic grades: compositional constraints from ore and wall rock alteration assemblages. Mineralium Deposita, 28, 469–481.
- Mohajjel, M., Fergusson, C.L. and Sahandi, M.R., 2003. Cretaceous-Tertiary convergence and continental collision, Sanandaj-Sirjan zone, western Iran. Journal of Asian Earth Sciences, 21, 397–412.
- Okrugin, V.M., Andreeva, E.D., Kim, A.U., Moskaleva, S.V., Okrugina, A.M., Filosofova, T.M., Yablokova, D.A. and Kudaeva, S.S., 2015. Zeolites of the Modern and Paleo-Hydrothermal Systems on Kamchatka. Proceedings World Geothermal Congress, Melbourne, Australia, 19, 25.
- Palʹyanova, G., 2008. Physicochemical modeling of the coupled behavior of gold and silver in hydrothermal processes: gold fineness, Au/Ag ratios and their possible implications. Chemical geology, 255, 399-413.
- Richards, J.P, Wilkinson, D. and Ullrich, T., 2006. Geology of the Sari Gunay Epithermal Deposit. Economic Geology, 101, 1455-1496.
- Samimi, M., 1992. Reconnaissance and pereliminary exploration in the Zarshuran area. Kavoshgran Engineering Consultant, Tehran, 47. (in Persian).
- Shepherd, T.J., Rankin, A.H. and Alderton, D.H., 1985. A Practical Guide to Fluid Inclusion Studies. Blackie and Son Press, London.
- Shenberger, D.M. and Barnes, H.L., 1989. Solubility of gold in aqueous sulphide solutions from 150 to 350°C. Geochim Cosmochim Acta, 53, 269–278.
- Sillitoe, R.H., 2010. Porphyry copper systems. Economic geology, 105, 3-41.
- Sillitoe, R.H. and Hedenquist, J.W., 2003. Linkages between Volcanotectonic Settings, Ore-Fluid Compositions, and Epithermal Precious Metal Deposits. Economic geology, Special Publication, 10, 315-343.
- Simmons, S.F., White, N.C. and John, D.A., 2005. Geological Characteristics of Epithermal Precious and Base Metal Deposits. Economic Geology, 100, 485–522.
- Taylor, H.P., 1971. Oxygen isotope evidence for large-scale interaction between meteoric ground waters and Tertiary granodiorite intrusions, western Cascade Range, Oregon. Journal of Geophysical Research, 76, 7855–7874.
- Wall, V.J., 2005. TAG: thermal aureole (pluton-related) gold systems. Australian Institute of Geoscientists. Quarterly Newsletter, 79, 1–7.
- Wilkinson, D., 2005a. Geology and Mineralization of the Sari Gunay Gold Deposit, Kordistan province Iran. Open-File Report Rio-Tinto Mining and Exploration Ltd.
- Wilkinson, D., 2005b. Report for Zar Kuh mining Company. P. 87. (Unpublished).
- Yang, J., Wu, F. and S.A. Wilde, 2003. A review of the geodynamic setting of large-scale late Mesozoic gold mineralization in the North China Craton: an association with lithospheric thinning. Ore Geology Reviews, 23, 125–152.
- Yilmaz, H., Oyman, T., Sonmez, F.N, Arehart, G.B. and Billor, Z., 2010. Intermediate sulfidation epithermal gold-base metal deposits in Tertiary subaerial volcanic rocks, Sahinli/Tespih Dere (Lapseki/ Western Turkey). Ore Geology Reviews, 37, 236–258.
- Yoo, B.C., 2000. Mineralogy and geochemical study of some mesothermal gold–silver-bearing vein deposits in the Yugu-Kwangchun mine district, Republic of Korea. PhD thesis, Chungnam National University, p. 230.
- Yoo, B.C., Lee, K.H. and White, C.N., 2010. Mineralogical, fluid inclusion, and stable isotope constraints on mechanisms of ore deposition at the Samgwang mine (Republic of Korea)-a mesothermal, vein-hosted gold–silver deposit, Mineralium Deposita published online, 45, 161-187.