Explaining the principles of smart housing architecture with the aim of reducing the efficiency of non-renewable energy in order to preserve the environment
Subject Areas :
Amir Shirdel
1
,
jamal Mahdi nejad
2
1 - Undergraduate Student, Department of Architecture, Faculty of Architecture and Urban Planning, Shahid Rajaee Teacher Training University, Tehran, Iran.
2 - Professor, Faculty of Architecture, Faculty of Architectural Engineering and Urban Planning, Shahid Rajaee Tarbiat University, Tehran.
Keywords: Sustainable architecture, smart housing, environment, optimization of energy consumption, renewable energy.,
Abstract :
In recent decades, the increase in the planet’s population, the expansion of urbanization and industrial development, and the unprincipled and unlimited exploitation of natural resources have severely affected the environment, leading to serious environmental damage. The destruction of forests, air, water, and soil pollution, climate change, and the reduction of biodiversity are among the consequences of this process, which are considered a serious threat to the future of mankind and natural ecosystems. Today, this situation highlights the need to change approaches and attitudes in architecture and move towards sustainability. With the increase in environmental challenges and the need to optimize resource consumption, smart residential buildings have been proposed as an important factor for promoting sustainable architecture and preserving the environment. This article examines new solutions to achieve smart residential buildings that can reduce energy consumption, optimize natural resources, and improve the quality of life for residents. Therefore, this qualitative research, using the descriptive-analytical method and targeted library study, as well as searching for available resources in this field, has obtained important results from domestic and foreign articles, books, etc.The results of the research show that today, smart buildings play an effective role in achieving sustainable architecture and development, and thus preserving the environment. Therefore, methods such as utilizing home automation systems, implementing Internet of Things (IoT) technology, using renewable energy sources, designing green spaces and vertical gardens, developing sustainable building materials, and smart water management are proposed as the most prominent and important factors in this field.
1- احمدی کمرپشتی، علی؛ غلامی، پیمان؛ و احمدی کمرپشتی، مهرداد(1390). بررسی استفاده از تکنولوژیهای نوین و اتوماسیون در ساختمانهای هوشمند، اولین همایش منطقهای مهندسی عمران، جویبار.
2- باغبانپور خوئی، عباس(2023). نقش فضاهای سبز شهری در کیفیت زندگی و محیطزیست شهری (مورد مطالعه: شهرستان خوی). پژوهشهای کاربردی در فنی و مهندسی، 32(4)، 93-114.
3- پناهنده، محمد؛ و صوفی، منصور(2005). رهیافت پیشگیری از وقوع آلودگی (PP) رویکرد محیط زیستی. محیطشناسی، 31(38).
4- رضایی، داود؛ نهاوندی، مرضیه؛ و زنده شاهوار، محمدامین(1392). ارائه راهکارهای مناسب نگهداری انرژی در معماری ساختمانهای مسکونی و بررسی کارایی سیستمهای هوشمند. اولین کنفرانس معماری و فضاهای شهری.
5- سرمدی، مرتضی(1392).ارائه مدلی جهت ورود هوشمندانه هوش مصنوعی به صنعت ساختمان با استفاده از تکنیک تصمیمگیری چند معیاره.کنفرانس بینالمللی عمران. معماری و توسعه پایدار شهری.تبریز.
6- مولایی, یوسف؛ و امین منصور، جواد(2019). راهبرد ملی توسعۀ پایدار: چالشها و فرصتها. فصلنامه سیاست، 49(3)، 837-862. doi:10.22059/jpq.2018.243863.1007158
7- مهدی نژاد، جمالالدین؛ و افقهی، سید ابوالفضل(1402). بررسی معماری فولدینگ و اثرات آن در معماری ایران، پنجمین کنفرانس بینالمللی فناوریهای نوین در مهندسی معماری و شهرسازی ایران، تهران.
8- مولانایی، صلاحالدین؛ و سلیمانی، سارا(2016). عناصر با ارزش معماری بومی منطقه سیستان، بر مبنای مؤلفههای اقلیمی معماری پایدار، 13(41)، 57-66.
9- مهدی نژاد، جمالالدین؛ و شیردل، امیرحسین(1403).حکمت معماری مسکن ایرانی مبتنی بر مصرف بهینه انرژی. چاپ اول.تهران: انتشارات اول و آخر.
10- مجتبوی، سیده مریم؛ و بنانژاد مشهدی، بهناز(1401). بررسی تأثیرات هوشمندسازی ساختمان بر صرفهجویی انرژی. پژوهشهای معماری نوین، 6(4)، 41. dor:20.1001.1.28209818.1401.2.4.1.2
11- ولی زاده اوغانی، محمدباقر؛ و موحدی، ناصر(2019). استفاده سامانههای ایستا و غیرفعال خورشیدی جهت ایجاد آسایش حرارتی در طرح معماری خانههای سنتی تبریز، 6(1)، 26-37.
12- Apanavičienė, R., & Shahrabani, M. M. N. (2023). Key factors affecting smart building integration into smart city: technological aspects. Smart Cities, 6(4), 1832-1857.
doi:10.3390/smartcities6040085
13- Borah, G. (2025). Emerging Trends in Smart Green Building Technologies. Heat Transfer Enhancement Techniques: Thermal Performance, Optimization and Applications, 391-415.
doi:10.1002/9781394270996.ch18
14- Brewer, T. (2024). Climate change: An interdisciplinary introduction. Springer Nature.
15- da Silva Tomadon, L., do Couto, E. V., de Vries, W. T., & Moretto, Y. (2024). Smart city and sustainability indicators: a bibliometric literature review. Discover Sustainability, 5(1), 143.
doi:10.1007/s43621-024-00328-w
16- Capodaglio, A. G. (2025). Energy use and decarbonisation of the water sector: a comprehensive review of issues, approaches, and technological options. Environmental Technology Reviews, 14(1), 40-68.
doi:10.1080/21622515.2024.2440163
17- Cheng, K. M., Tan, J. Y., Wong, S. Y., Koo, A. C., & Amir Sharji, E. (2022). A review of future household waste management for sustainable environment in Malaysian cities. Sustainability, 14(11), 6517.
doi:10.3390/su14116517
18- Clayton, T., & Radcliffe, N. (2018). Sustainability: a systems approach. Routledge.
19- Haines, V., Maguire, M., Cooper, C., Mitchell, V., Lenton, F., Keval, H., & Nicolle, C. (2005). User Centred Design in Smart Homes: Research to Support the Equipment Management and Services Aggregation Trials. Ergonomics and Safety Research Institute, Loughborough University, 1-110.
20- Kumar, K., Rani, V., & Kaur, R. (2025). Various Frameworks for Smart City and Urbanization System. In 5G Enabled Technology for Smart City and Urbanization System (pp. 23-35). Chapman and Hall/CRC.
21- Kibert, C. J. (2016). Sustainable construction: green building design and delivery. John Wiley & Sons.
22- Liu, H., Du, Z., Xue, T., & Jiang, T. (2025). Enhancing smart building performance with waste heat recovery: Supply-side management, demand reduction, and peak shaving via advanced control systems. Energy and Buildings, 327, 115070. doi:10.1016/j.enbuild.2024.115070
23- Moghayedi, A., Awuzie, B., Omotayo, T., Le Jeune, K., Massyn, M., Ekpo, C. O., ... & Byron, P. (2021). A critical success factor framework for implementing sustainable innovative and affordable housing: a systematic review and bibliometric analysis. Buildings, 11(8), 317.
doi:10.3390/buildings11080317
24- Nasr, I. B., Abaidi, I., & Thomas, L. (2025). Home Sweet Smart Home: Enhancing Consumer Valuation and Purchase Intention of Smart Home Technologies (SHTs) for Societal Value. Information Systems Frontiers, 1-29. doi:10.1007/s10796-024-10563-1
25- Park, M., Oh, H., & Lee, K. (2019). Security risk measurement for information leakage in IoT-based smart homes from a situational awareness perspective. Sensors, 19(9), 2148.
doi:10.3390/s19092148
26- Sadeghi, B., Cavaliere, P., Pruncu, C. I., Balog, M., Marques de Castro, M., & Chahal, R. (2024). Architectural design of advanced aluminum matrix composites: A review of recent developments. Critical Reviews in Solid State and Materials Sciences, 49(1), 1-71. doi:10.1080/10408436.2022.2078277
27- UNESCO. (2020). "Sustainable Development Goals: Architecture and the Built Environment." Retrieved from UNESCO website.
28- Wang, J., & Zakaria, S. A. (2025). Morphological Characteristics and Sustainable Adaptive Reuse Strategies of Regional Cultural Architecture: A Case Study of Fenghuang Ancient Town, Xiangxi, China. Buildings, 15(1), 119. doi:10.3390/buildings15010119
29- World Health Organization. (2023). WHO ambient air quality database, 2022 update: status report. World Health Organization.
30- Yusoff, M. M. (2020, August). Improving the quality of life for sustainable development. In IOP Conference Series: Earth and Environmental Science (Vol. 561, No. 1, p. 012020). IOP Publishing.