طراحی و شبیهسازی مقایسهکنندههای دو دنباله توان پایین و با سرعت بالا
الموضوعات :اکبر حیدری تبار 1 , حبیب اله آدرنگ 2 , سیدصالح قریشی 3 , رضا یوسفی 4
1 - دانشگاه آزاد اسلامی واحد نور
2 - دانشگاه آزاد اسلامی واحد نور
3 - دانشگاه آزاد اسلامی واحد نور
4 - دانشگاه آزاد اسلامی واحد نور
الکلمات المفتاحية: طراحی CMOS, مقایسهکننده, سرعت بالا, توان پایین, دو دنباله,
ملخص المقالة :
در یک ADC با توان کم و سرعت بالا، مقایسهکنندههای دینامیکی با توان کم و سرعت بالا از نیازهای ضروری میباشد. این مقاله تحلیلی از ملاحظات تاخیر انتشار، سرعت، و توان مصرفی مقایسهکننده را ارائه میکند و عبارات تحلیلی مورد نظر تجزیه و تحلیل میشوند. با استفاده از معادلات ریاضی، میتوان طراحی مقایسهکنندهها را درک نمود. بر اساس تحلیل ارائه شده، یک مقایسهکننده دینامیکی جدید با اصلاح مدار مقایسهکننده دو دنباله برای سرعت بالا و توان کم در ولتاژهای تغذیه کم بدون پیچیدگی طراحی مدار پیشنهاد شده است که منجر به کاهش قابلتوجه در زمان تاخیر و در نتیجه افزایش سرعت میشود. نتایج شبیهسازی در فناوری CMOS 0.18 میکرومتری نتایج تجزیه و تحلیل را اثبات میکند و نشان داده شده که مقایسهکننده دو دنباله پیشنهادی توان مصرفی را کاهش داده و سرعت را افزایش میدهد. نتایج شبیهسازی نشان میدهد که مقایسهکننده پیشنهادی تا فرکانس 5/2 گیگاهرتز با تاخیر 69 پیکوثانیه کار میکند و حدود 329 میکرووات را در ولتاژ تغذیه 2/1 ولت و انحراف استاندارد 8/7 میلیوات مصرف میکند.
[1] H. Ghasemian, R. Ghasemi, E. Abiri, and M. R. Salehi, "A novel high-speed low-power dynamic comparator with complementary differential input in 65 nm CMOS technology," Microelectronics J., vol. 92, Article ID: 104603, 9 pp., Oct. 2019.
[2] A. Mesgarani, M. N. Alam, F. Z. Nelson, and S. U. Ay, "Supply boosting technique for designing very low-voltage mixed-signal circuits in standard CMOS," in Proc. IEEE Int. Midwest Symp. Circuits Syst. Dig. Tech. Papers, pp. 893-896, Seattle, WA, USA, 1-4 Aug. 2010.
[3] M. Maymandi-Nejad and M. Sachdev, "1 bit quantiser with rail to rail input range for sub-1V modulators," IEEE Electron. Lett., vol. 39, no. 12, pp. 894-895, Jan. 2003.
[4] M. T. Mustaffa, "A low power comparator utilizing MTSCStack, DTTS, and bulk-driven techniques," IJRES, vol. 10, no. 3, pp. 221-229, Nov. 2021.
[5] B. Goll and H. Zimmermann, "A 0.12 μm CMOS comparator requiring 0.5 V at 600 MHz and 1.5 V at 6 GHz," in Proc. IEEE Int. Solid-State Circuits Conf., Dig. Tech. Papers, pp. 316-317, San Francisco, CA, USA, 11-15 Feb. 2007.
[6] D. Shinkel, E. Mensink, E. Klumperink, E. van Tuijl, and B. Nauta, "A double-tail latch-type voltage sense amplifier with 18 ps setup + hold time," in Proc. IEEE Int. Solid-State Circuits Conf., Dig. Tech. Papers, pp. 314-315, San Francisco, CA, USA, 11-15 Feb. 2007.
[7] P. Nuzzo, F. D. Bernardinis, P. Terreni, and G. Van der Plas, "Noise analysis of regenerative comparators for reconfigurable ADC architectures," IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 55, no. 6, pp. 1441-1454, Jul. 2008.
[8] B. Goll and H. Zimmermann, "Low-power 600 MHz comparator for 0.5 V supply voltage in 0.12 μm CMOS," IEEE Electron. Lett., vol. 43, no. 7, pp. 388-390, Mar. 2007.
[9] A. Nikoozadeh and B. Murmann, "An analysis of latched comaprator offset due to load capacitor mismatch," IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 53, no. 12, pp. 1398-1402, Dec. 2006.
[10] Y. L. Wong, M. H. Cohen, and P. A. Abshire, "A floating-gate comparator with automatic offset adaptation for 10-bit data conversion," IEEE Trans. on Circuits and Systems I: Regular Papers, vol. 52, no. 7, pp. 1316-1326, Jul. 2005.
[11] S. Babayan-Mashhadi and R. Lotfi, "An offset cancellation technique for comparators using body-voltage trimming," Int. J. Analog Integr. Circuits Signal Process, vol. 73, no. 3, pp. 673-682, Dec. 2012.
[12] V. Jain, "An intensive study of thermal effects in high speed low power CMOS dynamic comparators," in Proc. IEEE Int. Conf. on Communication and Electronics Systems, pp. 343-352, Coimbatre, India, 8-10 Jul. 2021.
[13] L. Nagy, D. Arbet, M. Kov'ac, M. Sovcik, and V. Stopjakov'a, "Performance analysis of ultra low-voltage rail-to-rail comparator in 130 nm CMOS technology," in Proc. IEEE AFRICON, 5 pp., Accra, Ghana, 25-27 Sept. 2019.
[14] S. Wang, C. Ghezzi, C. Camp, and A. Laville, "A 24 MHz relaxation oscillator using single current mode comparator with ±1.67% drift from -40◦C to +175◦C for automotive sensor application," in Proc. 2020 IEEE Sensors, 5 pp., Rotterdam, Netherlands, 25-28 Oct. 2020.
[15] M. Bchir, N. Hassen, and K. Besbes, "A novel high-performance ADC flash based on bulk-driven quasi-floating gate current mirror," in Proc. Int. Multi-Conf. on Systems, Signals & Devices, SSD'20, pp. 780-785, Monastir, Tunisia, 20-23 Jul. 2020.
[16] M. Yavari, N. Maghari, and O. Shoaei, "An accurate analysis of slew rate for two-stage CMOS opamps," IEEE Trans. on Circuits and Systems II, vol. 52, no. 3, pp. 164-167, Mar. 2005.
[17] N. Dupré, Y. Bidaux, O. Dubrulle, and G. F. Close, "A stray-field-immune magnetic displacement sensor with 1% accuracy," IEEE Sensors J., vol. 20, no. 19, pp. 11405-11411, 1 Oct. 2020.