بازسازی شرایط محیط رسوبی سازند تاربور براساس تجزیه و تحلیل میکروفاسیس ها در ناحیه مورک (جنوب سمیرم)
محورهای موضوعی : شاخه های دیگر علوم زمین در ارتباط با زمین شناسی نفتحسین قنبرلو 1 , امراله صفری 2 , حسین وزیری مقدم 3
1 - دانشگاه اصفهان
2 - دانشگاه اصفهان
3 - دانشگاهاصفهان
کلید واژه: رودیست, سازند تاربور, میکروتافوفاسیس, میکروفاسیس, امواج طوفانی, ماستریشتین,
چکیده مقاله :
به منظور بازسازی شرایط محیط رسوبی رسوبات ماستریشتین میانی-بالایی (سازند تاربور) در ناحیه مورک (جنوب سمیرم) از مطالعات میکروفاسیس و میکروتافوفاسیس استفاده گردید. سازند تاربور در ناحیه مورک با ضخامت 239 متر از آهک و شیل تشکیل شده است. این سازند بر روی سازند گورپی و زیر رسوبات کنگلومرای پالئوسن قرار دارد. هفت میکروفاسیس براساس توزیع آلوکم های اصلی و ویژگی های رسوبی تشخیص داده شد. علاوه براین رسوبات سازند تاربور در یک پلت فرم کربناته از نوع رمپ هموکلینال تشکیل شده است. براساس نوع آلوکم های اصلی و ویژگی های تافونومیکی پنج میکروتافوفاسیس در ناحیه مورد مطالعه شناسایی و براساس تفسیر و توزیع عمودی میکروفاسیس ها و میکروتافوفاسیس ها بیشتر رسوبات در ناحیه مورد مطالعه در یک محیط تحت تاثیر امواج طوفانی ته نشین شده اند و به همین دلیل باعث عدم تشکیل تجمعات رودیستی و فراوانی جلبک های سبز دازی کلاداسه آ در ناحیه مورد مطالعه گردیده است. همچنین به علت ورود مواد آواری و افزایش مواد غذایی، قشرسازی بیشتر توسط بریوزئر ها صورت پذیرفته است.
Reconstruction of the sedimentary environment of the Middle-Upper Maastrichtian deposits (Tarbur Formation) in the Murak area (southwest of Semirom) was performed based on Microfacies and microtaphofacies analysis. The formation with 239 m thickness consists of limestone and shale. Meanwhile, the Tarbur deposits overlie the Gurpi Formation and is covered by the Paleocene deposits. Seven and five microfacies and microtaphofacies were recognized based on the main components and sedimentological and taphonomical features, respectively. In addition, these microfacies and microtaphofacies were deposited in homonicnal carbonate ramp. From the viewpoint of vertical distribution and interpretation of microfacies and microtaphofacies, the Tarbur deposits were formed in the energetic environment (under the influence of the storm waves) in the study area. Therefore, communities of rudist are absent and the green algae (Dasycladales) are abundant in the study area. Concerning the high rate of detrital grain input and increasing of nutrients, the bryozoans were performed the encrusting more than other organisms.
[1] آقانباتي، ع.، 1385، زمين شناسي ايران: سازمان زمين شناسي و اکتشافات معدني کشور، 586 ص.
[2] بختیاری، س.، 1392 ، اطلس راه های ایران: موسسه جغرافیایی و کارتوگرافی گیتاشناسی، 1:1000000
[3] صداقت، م. ا.، قریب، ف. و شاوردی، ط. ، 1377 ، نقشه زمین شناسی چهارگوش سمیرم: انتشارات سازمان زمین شناسی کشور، مقیاس 1:1000000.
[4] صفري، ا.، وزيري مقدم، ح. و لاسمي ی.، ۱۳۸۵، ميكروفاسيس ها و محيط رسوبي سازند تاربور در ناحيه خرامه (جنوب شرق شيراز)، دو فصلنامه مجله پژوهشي علوم پايه دانشگاه اصفهان، جلد، ۲۳، شماره ۱، ۱۲۳-۱۳۶.
[5] عزيزي، ر.، صفري، ا. و وزيري مقدم، ح.، 1394، ریزرخساره ها، محیط رسوبی و چینه نگاری سکانسی سازند تاربور در ناحیه سمیرم (جنوب غرب اصفهان)، دو فصلنامه رخساره های رسوبی مشهد، جلد 8، شماره 2، 198-215.
[6] مغفوري مقدم، ا.، ۱۳۸۴، ديرينه شناسي و محيط ديرينه سازند تاربور در اطراف خرم آباد،فصلنامه علوم زمين، جلد ۱۵، شماره ۵۸، ۳۸-۴۵.
[7] ABDEL-GAWAD, G.I., SABER, S.G., EL SHAZLY, S.H., and SALAMA, Y.F., 2011, Turonian rudist facies from Abu Roash area, north western desert, Egypt: Journal of African Earth Sciences, 59(4-5), 359–372.
[8] ACCORDI, G., CARBONE, F., and PIGNATTI, J.O., 1998, Depositional history of a Paleogene carbonate ramp (western Cephalonia, Ionian Islands, Greece): Geologica Romana, 34, 131–205.
[9] AFZAL, J., WILLIAMS, M., LENG, M.J., and ALDRIDGE, R. J., 2011, Dynamic response of the shallow marine benthic ecosystem to regional and pan-Tethyan environmental change at the Paleocene–Eocene boundary. Palaeogeography, Palaeoclimatology, Palaeoecology, 309, 141–160.
[10 AGHAEI, A., MAHBOUBI, A., MOUSSAVI-HARAMI, R., HEUBECK, C., and NADJAFI, M., 2013, Facies analysis and sequence stratigraphy of an Upper Jurassic carbonate ramp in the Eastern Alborz range and Binalud Mountains, NE Iran: Facies, 59(4), 863–889.
[11] ALAVI, M., 2007, Structures of the Zagros fold-thrust belt in Iran: American Journal of science, 307(9), 1064–1095.
[12] AL-HAJ, M.A., 2020, Sedimentological Study of the Hartha Formation in Selected Oilfields, Northern Iraq: Iranian Journal of Science and Technology Transaction A-Science, 44(2), 389–400.
[13] AMIRI BAKHTIAR, H., TAHERI, A., and VAZIRI-MOGHADDAM, H., 2011, Maastrichtian facies succession and sea-level history of the Hossein-Abad, Neyriz area, Zagros Basin: Historical Biology, 23(02-03), 145–153.
[14] AUTHEMAYOU, C., CHARDON, D., BELLIER, O., MALEKZADEH, Z., SHABANIAN, E., and ABBASSI, M.R., 2006. Late Cenozoic partitioning of oblique plate convergence in the Zagros fold‐and‐thrust belt (Iran): Tectonics, 25(3), 1–21.
[15] BARATTOLO, F. and BIGOZZI, A., 1996, Dasycladaleans and depositional environments of the Upper Triassic-Liassic carbonate platform of the Gran Sasso (Central Apennines, Italy): Facies, 35(1), 163–208.
[16] BASSI, D., POSENATO, R., and NEBELSICK, J.H., 2015, Paleoecological dynamics of shallow-water bivalve carpets from a Lower Jurassic lagoonal setting, northeast Italy: Palaios, 30(10), 758–770.
[17] BEAVINGTON-PENNEY, S.J., 2004, Analysis of the effects of abrasion on the test of Palaeonummulites venosus: implications for the origin of nummulithoclastic sediments: Palaios, 19(2), 143–155.
[18] BERBERIAN, M. and KING, G.C.P., 1981, Towards a paleogeography and tectonic evolution of Iran: Canadian journal of earth sciences, 18(2), 210–265. [19] BERNING, B., REUTER, M., PILLER, W.E., HARZHAUSER, M., and KROH, A., 2009, Larger foraminifera as a substratum for encrusting bryozoans (Late Oligocene, Tethyan Seaway, Iran): Facies, 55(2), 227–241.
[20] BIGNOT, G. and STROUGO, A.. 2002, Middle Eocene benthic foraminiferal assemblages from Eastern Egypt, as biochronological and Peritethyan lagoonal indicators: Revue de Micropaléontologie, 45, 73–98.
[21] BOSOLD, A., SCHWARZHANS, W., JULAPOUR, A., ASHRAFZADEH, A.R., and EHSANI, S.M., 2005, The structural geology of the High Central Zagros revisited (Iran): Petroleum Geoscience, 11(3), 225–238.
[22] BRACHERT, T.C., BETZLER, C., BRAGA, J.C., and MARTIN, J.M., 1998, Microtaphofacies of a warm-temperate carbonate ramp (uppermost Tortonian/lowermost Messinian, southern Spain): Palaios, 13, 459–475.
[23] CARANNANTE, G., RUBERTI, D., and SIMONE, L., 2003, Sedimentological and taphonomic characterization of low-energy rudist-dominated Senonian carbonate shelves (Southern Apennines, Italy): In North African Cretaceous Carbonate Platform Systems, Springer, Dordrecht, 189–201.
[24] CARANNANTE, G., RUBERTI, D., and SIRNA, M., 2000, Upper Cretaceous ramp limestones from the Sorrento Peninsula (southern Apennines, Italy): micro-and macrofossil associations and their significance in the depositional sequences: Sedimentary geology, 132(1-2), 89–123.
[25] CHATALOV, A., BONEV, N., and IVANOVA, D., 2015, Depositional characteristics and constraints on the mid-Valanginian demise of a carbonate platform in the intra-Tethyan domain, Circum-Rhodope Belt, northern Greece: Cretaceous Research, 55, 84–115.
[26] DUNHAM, R.J., 1962, Classification of carbonate rocks according to depositional texture, In: HAM, W.E., (Eds.), Classification of carbonate rocks, A symposium: America: American Association Petroleum Geologist, 108–121.
[27] EMBRY, A.F. and KLOVAN, J.E., 1972, Late Devonian reef tract on northeastern Banks Island, Northwest territories: Bulletin of Canadian Petroleum Geology, 19, 730–781.
[28] ESMERAY-SENLET, S., ÖZKAN-ALTINER, S., ALTINER, D., and MILLER, K.G., 2015, Planktonic Foraminiferal Biostratigraphy, Microfacies Analysis, Sequence Stratigraphy, and Sea-Level Changes Across the Cretaceous–Paleogene Boundary In the Haymana Basin, Central Anatolia, Turkey: Journal of sedimentary research, 85(5), 489–508.
[29] FARZIPOUR‐SAEIN, A., YASSAGHI, A., SHERKATI, S., and KOYI, H., 2009a, Basin evolution of the Lurestan region in the Zagros fold‐and‐thrust belt, Iran: Journal of Petroleum Geology, 32(1), 5-19.
[30] FLÜGEL, E., 2010, Microfacies of Carbaonate Rocks, Analysis, Interpretation and Application: Springer-Verlag, Berlin, 976.
[31] GAYARA, A.D. and MOUSA, A.K., 2015, Sequence Stratigraphy and Reservoir Characterization of the Upper Campanian-Maastrichtian Succession, Buzurgan Field, Southeastern Iraqi: Iraqi Journal of Science, 56(2B), 1457–1464.
[32] GAYARA, A.D., NASSER, M.E., and KADHIM, A.J., 2016, Reservior Characterization of The Hartha Formation, Southern Iraq: Iraqi Journal of Science, 57(3B), 2062–2075.
[33] Geel, T., 2000, Recognition of stratigraphic sequence in carbonate platform and slope deposits: empirical models based on microfacies analysis of Palaeogene deposits in southeastern Spain: Palaeogeography, Palaeoclimatology, Palaeoecology, 155, 211–238.
[34] GOLONKA, J., 2004, Plate tectonic evolution of the southern margin of Eurasia in the Mesozoic and Cenozoic: Tectonophysics, 381(1-4), 235–273.
[35] HEYDARI, E., 2008, Tectonics versus eustatic control on supersequences of the Zagros Mountains of Iran: Tectonophysics, 451(1–4), 56–70.
[36] HOHENEGGER, J., 2009, Functional shell geometry of symbiont-bearing benthic foraminifera: Galaxea, Journal of Coral Reef Studies, 11(2), 81–89.
[37] KLICPERA, A., MICHEL, J., and WESTPHAL, H., 2015: Facies patterns of a tropical heterozoan carbonate platform under eutrophic conditions: the Banc d’Arguin, Mauritania. Facies, 61(1), 1–24.
[38] KORBAR, T., MCDONALD, I., PREMEC FUĆEK, V., FUČEK, L., and POSILOVIĆ, H., 2017, Post‐impact event bed (tsunamite) at the Cretaceous–Palaeogene boundary deposited on a distal carbonate platform interior: Terra Nova, 29(2), 135–143.
[39] JAMES, G.A. and WYND, J.G., 1965, Stratigraphic nomenclature of the Iranian oil consortium Agreement Area: American Association of Petroleum Geologists, Bulletin, 49, 2182–2245.
[40] JEŽ, J., OTONIČAR, B., FUČEK, L., and OGORELEC, B., 2011, Late Cretaceous sedimentary evolution of a northern sector of the Adriatic Carbonate Platform (Matarsko Podolje, SW Slovenia): Facies, 57(3), 447–468.
[41] LÉZIN, C., ANDREU, B., ETTACHFINI, E.M., WALLEZ, M.J., LEBEDEL, V., and MEISTER, C., 2012, The upper Cenomanian–lower Turonian of the Preafrican Trough, Morocco: Sedimentary Geology, 245–246, 1–16.
[42] LUCI, L., 2010, Encrusting patterns and life habit of Mesozoic trigonioids: a case study of Steinmanella quintucoensis (Weaver) from the Early Cretaceous of Argentina: Lethaia, 43(4), 529–544.
[43] MAHDI, T.A. and AQRAWI, A.A., 2018, Role of facies diversity and cyclicity on the reservoir quality of the mid-Cretaceous Mishrif Formation in the southern Mesopotamian Basin, Iraq: Geological Society, London, Special Publications, 435(1), 85–105.
[44] MALAK, Z.A. and AL-BANNA, N.Y., 2014, Sequence stratigraphy of Aqra Formation (Late Upper Campanian–Maastrichtian) in Geli Zanta corge, Northern Iraq: Arabian Journal of Geosciences, 7(3), 971–985.
[45] Meriç, E., Görmüş, M., 2001, The genus Loftusia: Micropaleontology, 47, 1-71.
[46] MORO, A., VELIĆ, I., MIKUŽ, V., and HORVAT, A., 2018, Microfacies characteristics of carbonate cobble from Campanian of Slovenj Gradec (Slovenia): implications for determining the Fleuryana adriatica De Castro, Drobne and Gušić paleoniche and extending the biostratigraphic range in the Tethyan real m: Rudarsko-geološko-naftni zbornik, 33(4), 1–12.
[47] MOUTHEREAU, F., LACOMBE, O., and VERGÉS, J., 2012, Building the Zagros collisional orogen: timing, strain distribution and the dynamics of Arabia/Eurasia plate convergence: Tectonophysics, 532, 27–60.
[48] MÜLAYIM, O., YILMAZ, İ.Ö., ÖZER, S., SARI, B., and TASLI, K., 2020, A Cenomanian–Santonian rudist–bearing carbonate platform on the northern Arabian Plate, Turkey: facies and sequence stratigraphy: Cretaceous Research, 110, 104–414.
[49] NAVARRO-RAMIREZ, J.P., BODIN, S., CONSORTI, L., and IMMENHAUSER, A., 2017, Response of western South American epeiric-neritic ecosystem to middle Cretaceous Oceanic Anoxic Events: Cretaceous Research, 75, 61–80.
[50] NEBELSICK, J. H., BASSI, D.. and LEMPP, J., 2013, Tracking paleoenvironmental changes in coralline algal-dominated carbonates of the Lower Oligocene Calcareniti di Castelgomberto formation (Monti Berici, Italy): Facies, 59, 133–148.
[51] NEBELSICK, J.H., BASSI, D., and RASSER, M.W., 2011, Microtaphofacies: Exploring the Potential for Taphonomic Analysis in Carbonates, In: Allison, P.A., and Bottjer, D.J. (Eds.), Taphonomy. Aims and Scope Topics in Geobiology Book Series, Springer, Dordrecht, 32, 337–373.
[52] ÖZER, S., EL-SOROGY, A.S., AL-DABBAGH, M.E., and AL-KAHTANY, K., 2019, Campanian–Maastrichtian unconformities and rudist diagenesis, Aruma Formation, central Saudi Arabia: Arabian Journal of Geosciences, 12(2), 1–34.
[53] PARHAM, S., PIRYAEI, A.R., GHORBANI, M., and MOUSSAVI-HARAMI, R., 2019, Paleogeographic evolution of the Maastrichtian deposits in the eastern Fars area (Zagros, Iran) using high-resolution sequence stratigraphic analysis: Carbonates and Evaporites, 34(2), 315–334.
[54] PLEŞ, G., BUCUR, I.I., and SĂSĂRAN, E., 2016, Depositional environments, facies and diagenesis of the Upper Jurassic–Lower Cretaceous carbonate deposits of the Buila-Vânturariþa Massif, Southern Carpathians (Romania): In Annales Societatis Geologorum Poloniae, 86, 165–183.
[55] PLEŞ, G., OPRIŞA, A., BUCUR, I.I., SĂSĂRAN, E., MIRCESCU, C.V., OLTEAN, G., and IACOB, R.G., 2019, The central-western Getic Carbonate Platform: Upper Jurassic to Lower Cretaceous biostratigraphy and sedimentary evolution of the Cioclovina–Băniţa sector (Southern Carpathians, Romania). Facies, 65(3), 1–32. [56] POMAR, L., BRANDANO, M., and WESTPHAL, H., 2004, Environmental factors influencing skeletal grain sediment associations: a critical review of Miocene examples from the western Mediterranean: Sedimentology, 51(3), pp.627-651.
[57] POMAR, L. and KENDALL, C., 2008, Architecture of carbonate platforms: a response to hydrodynamics and evolving ecology. In Controls on carbonate platform and reef development, SEPM Special Publication, 89, 187–216.
[58] SADOONI, F.N., 2018, Impact of the demise mechanisms of the Cretaceous rudist buildups in the Arabian Plate on their reservoir characteristics: Carbonates and Evaporites, 33(3), 465–476.
[59] SAMANKASSOU, E., 2002, Cool-water carbonates in a paleoequatorial shallow-water environment: The paradox of the Auernig cyclic sediments (Upper Pennsylvanian, Carnic Alps, Austria-Italy) and its implications: Geology, 30(7), 655–658.
[60] SANDERS, D., 1999, Shell disintegration and taphonomic loss in rudist biostromes: Lethaia, 32(2), 101–112.
[61] SANDERS, D. and BARON-SZABO, R.C., 1997, Coral-rudist bioconstructions in the Upper Cretaceous Haidach section (Gosau Group; Northern Calcareous Alps, Austria): Facies, 36(1), 69–89. [62] SANDERS, D., LUKESCH, M., RASSER, M., and SKELTON, P., 2007, Shell beds of diceratid rudists ahead of a law-energy gravelly beach (tithonian, northern calcareous alps, austria): palaeoecology and taphonomy: Austrian Journal of Earth Sciences, 100, 186–199.
[63] SANDERS, D. and PONS, J.M., 1999, Rudist formations in mixed siliciclastic-carbonate depositional environments, Upper Cretaceous, Austria: stratigraphy, sedimentology, and models of development: Palaeogeography, Palaeoclimatology, Palaeoecology, 148(4), 249–284.
[64] SCHUMANN, D., 2000. Paleoecology of late Cretaceous rudist settlements in Central Oman, In: ALSHARHAN A.S., SCOTT, R.W. (Eds.) Middle East models of Jurassic/Cretaceous carbonate systems, SEPM Special Publication, Suite, 69, 143–153.
[65] SIMONE, L., CARANNANTE, G., RUBERTI, D., SIRNA, M., SIRNA, G., LAVIANO, A., and TROPEANO, M., 2003, Development of rudist lithosomes in the Coniacian–Lower Campanian carbonate shelves of central-southern Italy: high-energy vs low-energy settings: Palaeogeography, Palaeoclimatology, Palaeoecology, 200(1-4), 5–29.
[66] SILVESTRI, G., BOSELLINI, F.R., and NEBELSICK, J.H., 2011, Microtaphofacies analysis of lower Oligocene turbid-water coral assemblages: Palaios, 26, 805–820.
[67] SOLAK, C., TASLI, K., and KOÇ, H., 2017, Biostratigraphy and facies analysis of the Upper Cretaceous–Danian? platform carbonate succession in the Kuyucak area, western Central Taurides, S Turkey: Cretaceous Research, 79, 43–63.
[68] STEIN, M., ARNAUD-VANNEAU, A., ADATTE, T., FLEITMANN, D., SPANGENBERG, J.E., and FOLLMI, K.B., 2012, Palaeoenvironmental and palaeoecological change on the northern Tethyan carbonate platform during the Late Barremian to earliest Aptian: Sedimentology 59, 939–963.
[69] READ, J.F., 1982, Carbonate platforms of passive (extensional) continental margins: types, characteristics and evolution: Tectonophysics 81, 195–212.
[70] READ, J.F., 1985, Carbonate platform facies models: AAPG Bulletian, 69, 1–21.
[71] RUBERTI, D., 1997, Facies analysis of an Upper Cretaceous high-energy rudist-dominated carbonate ramp (Matese Mountains, central-southern Italy): subtidal and peritidal cycles: Sedimentary Geology, 113(1-2), 81–110.
[72] RUBERTI, D., CARANNANTE, G., SIMONE, L., SIRNA, M., and SIRNA, G., 2007, Sedimentary processes and biofacies of Late Cretaceous carbonate low energy ramp systems (Southern Italy): SEPM (Society for Sedimentary Geology), 87, 57–70.
[73] RUBERTI, D. and TOSCANO, F., 2002, Microstratigraphy and taphonomy of rudist shell concentrations in Upper Cretaceous limestones, Cilento area (central-southern Italy): Geobios, 35, 228–240.
[74] RUBERTI, D., TOSCANO, F., CARANNANTE, G., and SIMONE, L., 2006, Rudist lithosomes related to current pathways in Upper Cretaceous temperate-type, inner shelves: a case study from the Cilento area, southern Italy: Geological Society, London, Special Publications, 255(1), 179–195.
[75] VAZIRI-MOGHADDAM, H., SAFARI, A., and TAHERI, A., 2005, Microfacies, paleoenvironments and sequence stratigraphy of the Tarbur Formation in Kherameh area, SW Iran: Carbonates and Evaporites, 20(2), 131–137.
[76] VILLALONGA, R., BOIX, C., FRIJIA, G., PARENTE, M., BERNAUS, J.M., and CAUS, E., 2019, Larger foraminifera and strontium isotope stratigraphy of middle Campanian shallow-water lagoonal facies of the Pyrenean Basin (NE Spain): Facies. 65, 1–20.
[77] Wynd, A.G., 1965, Biofacies of the Iranian oil consortium agreement area (I.O.O.C) report No. 1082, unpublished paper.