بازسازی شرایط محیط رسوبی سازند تاربور براساس تجزیه و تحلیل میکروفاسیس ها در ناحیه مورک (جنوب سمیرم)
الموضوعات :حسین قنبرلو 1 , امراله صفری 2 , حسین وزیری مقدم 3
1 - دانشگاه اصفهان
2 - دانشگاه اصفهان
3 - دانشگاهاصفهان
الکلمات المفتاحية: رودیست, سازند تاربور, میکروتافوفاسیس, میکروفاسیس, امواج طوفانی, ماستریشتین,
ملخص المقالة :
به منظور بازسازی شرایط محیط رسوبی رسوبات ماستریشتین میانی-بالایی (سازند تاربور) در ناحیه مورک (جنوب سمیرم) از مطالعات میکروفاسیس و میکروتافوفاسیس استفاده گردید. سازند تاربور در ناحیه مورک با ضخامت 239 متر از آهک و شیل تشکیل شده است. این سازند بر روی سازند گورپی و زیر رسوبات کنگلومرای پالئوسن قرار دارد. هفت میکروفاسیس براساس توزیع آلوکم های اصلی و ویژگی های رسوبی تشخیص داده شد. علاوه براین رسوبات سازند تاربور در یک پلت فرم کربناته از نوع رمپ هموکلینال تشکیل شده است. براساس نوع آلوکم های اصلی و ویژگی های تافونومیکی پنج میکروتافوفاسیس در ناحیه مورد مطالعه شناسایی و براساس تفسیر و توزیع عمودی میکروفاسیس ها و میکروتافوفاسیس ها بیشتر رسوبات در ناحیه مورد مطالعه در یک محیط تحت تاثیر امواج طوفانی ته نشین شده اند و به همین دلیل باعث عدم تشکیل تجمعات رودیستی و فراوانی جلبک های سبز دازی کلاداسه آ در ناحیه مورد مطالعه گردیده است. همچنین به علت ورود مواد آواری و افزایش مواد غذایی، قشرسازی بیشتر توسط بریوزئر ها صورت پذیرفته است.
[1] آقانباتي، ع.، 1385، زمين شناسي ايران: سازمان زمين شناسي و اکتشافات معدني کشور، 586 ص.
[2] بختیاری، س.، 1392 ، اطلس راه های ایران: موسسه جغرافیایی و کارتوگرافی گیتاشناسی، 1:1000000
[3] صداقت، م. ا.، قریب، ف. و شاوردی، ط. ، 1377 ، نقشه زمین شناسی چهارگوش سمیرم: انتشارات سازمان زمین شناسی کشور، مقیاس 1:1000000.
[4] صفري، ا.، وزيري مقدم، ح. و لاسمي ی.، ۱۳۸۵، ميكروفاسيس ها و محيط رسوبي سازند تاربور در ناحيه خرامه (جنوب شرق شيراز)، دو فصلنامه مجله پژوهشي علوم پايه دانشگاه اصفهان، جلد، ۲۳، شماره ۱، ۱۲۳-۱۳۶.
[5] عزيزي، ر.، صفري، ا. و وزيري مقدم، ح.، 1394، ریزرخساره ها، محیط رسوبی و چینه نگاری سکانسی سازند تاربور در ناحیه سمیرم (جنوب غرب اصفهان)، دو فصلنامه رخساره های رسوبی مشهد، جلد 8، شماره 2، 198-215.
[6] مغفوري مقدم، ا.، ۱۳۸۴، ديرينه شناسي و محيط ديرينه سازند تاربور در اطراف خرم آباد،فصلنامه علوم زمين، جلد ۱۵، شماره ۵۸، ۳۸-۴۵.
[7] ABDEL-GAWAD, G.I., SABER, S.G., EL SHAZLY, S.H., and SALAMA, Y.F., 2011, Turonian rudist facies from Abu Roash area, north western desert, Egypt: Journal of African Earth Sciences, 59(4-5), 359–372.
[8] ACCORDI, G., CARBONE, F., and PIGNATTI, J.O., 1998, Depositional history of a Paleogene carbonate ramp (western Cephalonia, Ionian Islands, Greece): Geologica Romana, 34, 131–205.
[9] AFZAL, J., WILLIAMS, M., LENG, M.J., and ALDRIDGE, R. J., 2011, Dynamic response of the shallow marine benthic ecosystem to regional and pan-Tethyan environmental change at the Paleocene–Eocene boundary. Palaeogeography, Palaeoclimatology, Palaeoecology, 309, 141–160.
[10 AGHAEI, A., MAHBOUBI, A., MOUSSAVI-HARAMI, R., HEUBECK, C., and NADJAFI, M., 2013, Facies analysis and sequence stratigraphy of an Upper Jurassic carbonate ramp in the Eastern Alborz range and Binalud Mountains, NE Iran: Facies, 59(4), 863–889.
[11] ALAVI, M., 2007, Structures of the Zagros fold-thrust belt in Iran: American Journal of science, 307(9), 1064–1095.
[12] AL-HAJ, M.A., 2020, Sedimentological Study of the Hartha Formation in Selected Oilfields, Northern Iraq: Iranian Journal of Science and Technology Transaction A-Science, 44(2), 389–400.
[13] AMIRI BAKHTIAR, H., TAHERI, A., and VAZIRI-MOGHADDAM, H., 2011, Maastrichtian facies succession and sea-level history of the Hossein-Abad, Neyriz area, Zagros Basin: Historical Biology, 23(02-03), 145–153.
[14] AUTHEMAYOU, C., CHARDON, D., BELLIER, O., MALEKZADEH, Z., SHABANIAN, E., and ABBASSI, M.R., 2006. Late Cenozoic partitioning of oblique plate convergence in the Zagros fold‐and‐thrust belt (Iran): Tectonics, 25(3), 1–21.
[15] BARATTOLO, F. and BIGOZZI, A., 1996, Dasycladaleans and depositional environments of the Upper Triassic-Liassic carbonate platform of the Gran Sasso (Central Apennines, Italy): Facies, 35(1), 163–208.
[16] BASSI, D., POSENATO, R., and NEBELSICK, J.H., 2015, Paleoecological dynamics of shallow-water bivalve carpets from a Lower Jurassic lagoonal setting, northeast Italy: Palaios, 30(10), 758–770.
[17] BEAVINGTON-PENNEY, S.J., 2004, Analysis of the effects of abrasion on the test of Palaeonummulites venosus: implications for the origin of nummulithoclastic sediments: Palaios, 19(2), 143–155.
[18] BERBERIAN, M. and KING, G.C.P., 1981, Towards a paleogeography and tectonic evolution of Iran: Canadian journal of earth sciences, 18(2), 210–265. [19] BERNING, B., REUTER, M., PILLER, W.E., HARZHAUSER, M., and KROH, A., 2009, Larger foraminifera as a substratum for encrusting bryozoans (Late Oligocene, Tethyan Seaway, Iran): Facies, 55(2), 227–241.
[20] BIGNOT, G. and STROUGO, A.. 2002, Middle Eocene benthic foraminiferal assemblages from Eastern Egypt, as biochronological and Peritethyan lagoonal indicators: Revue de Micropaléontologie, 45, 73–98.
[21] BOSOLD, A., SCHWARZHANS, W., JULAPOUR, A., ASHRAFZADEH, A.R., and EHSANI, S.M., 2005, The structural geology of the High Central Zagros revisited (Iran): Petroleum Geoscience, 11(3), 225–238.
[22] BRACHERT, T.C., BETZLER, C., BRAGA, J.C., and MARTIN, J.M., 1998, Microtaphofacies of a warm-temperate carbonate ramp (uppermost Tortonian/lowermost Messinian, southern Spain): Palaios, 13, 459–475.
[23] CARANNANTE, G., RUBERTI, D., and SIMONE, L., 2003, Sedimentological and taphonomic characterization of low-energy rudist-dominated Senonian carbonate shelves (Southern Apennines, Italy): In North African Cretaceous Carbonate Platform Systems, Springer, Dordrecht, 189–201.
[24] CARANNANTE, G., RUBERTI, D., and SIRNA, M., 2000, Upper Cretaceous ramp limestones from the Sorrento Peninsula (southern Apennines, Italy): micro-and macrofossil associations and their significance in the depositional sequences: Sedimentary geology, 132(1-2), 89–123.
[25] CHATALOV, A., BONEV, N., and IVANOVA, D., 2015, Depositional characteristics and constraints on the mid-Valanginian demise of a carbonate platform in the intra-Tethyan domain, Circum-Rhodope Belt, northern Greece: Cretaceous Research, 55, 84–115.
[26] DUNHAM, R.J., 1962, Classification of carbonate rocks according to depositional texture, In: HAM, W.E., (Eds.), Classification of carbonate rocks, A symposium: America: American Association Petroleum Geologist, 108–121.
[27] EMBRY, A.F. and KLOVAN, J.E., 1972, Late Devonian reef tract on northeastern Banks Island, Northwest territories: Bulletin of Canadian Petroleum Geology, 19, 730–781.
[28] ESMERAY-SENLET, S., ÖZKAN-ALTINER, S., ALTINER, D., and MILLER, K.G., 2015, Planktonic Foraminiferal Biostratigraphy, Microfacies Analysis, Sequence Stratigraphy, and Sea-Level Changes Across the Cretaceous–Paleogene Boundary In the Haymana Basin, Central Anatolia, Turkey: Journal of sedimentary research, 85(5), 489–508.
[29] FARZIPOUR‐SAEIN, A., YASSAGHI, A., SHERKATI, S., and KOYI, H., 2009a, Basin evolution of the Lurestan region in the Zagros fold‐and‐thrust belt, Iran: Journal of Petroleum Geology, 32(1), 5-19.
[30] FLÜGEL, E., 2010, Microfacies of Carbaonate Rocks, Analysis, Interpretation and Application: Springer-Verlag, Berlin, 976.
[31] GAYARA, A.D. and MOUSA, A.K., 2015, Sequence Stratigraphy and Reservoir Characterization of the Upper Campanian-Maastrichtian Succession, Buzurgan Field, Southeastern Iraqi: Iraqi Journal of Science, 56(2B), 1457–1464.
[32] GAYARA, A.D., NASSER, M.E., and KADHIM, A.J., 2016, Reservior Characterization of The Hartha Formation, Southern Iraq: Iraqi Journal of Science, 57(3B), 2062–2075.
[33] Geel, T., 2000, Recognition of stratigraphic sequence in carbonate platform and slope deposits: empirical models based on microfacies analysis of Palaeogene deposits in southeastern Spain: Palaeogeography, Palaeoclimatology, Palaeoecology, 155, 211–238.
[34] GOLONKA, J., 2004, Plate tectonic evolution of the southern margin of Eurasia in the Mesozoic and Cenozoic: Tectonophysics, 381(1-4), 235–273.
[35] HEYDARI, E., 2008, Tectonics versus eustatic control on supersequences of the Zagros Mountains of Iran: Tectonophysics, 451(1–4), 56–70.
[36] HOHENEGGER, J., 2009, Functional shell geometry of symbiont-bearing benthic foraminifera: Galaxea, Journal of Coral Reef Studies, 11(2), 81–89.
[37] KLICPERA, A., MICHEL, J., and WESTPHAL, H., 2015: Facies patterns of a tropical heterozoan carbonate platform under eutrophic conditions: the Banc d’Arguin, Mauritania. Facies, 61(1), 1–24.
[38] KORBAR, T., MCDONALD, I., PREMEC FUĆEK, V., FUČEK, L., and POSILOVIĆ, H., 2017, Post‐impact event bed (tsunamite) at the Cretaceous–Palaeogene boundary deposited on a distal carbonate platform interior: Terra Nova, 29(2), 135–143.
[39] JAMES, G.A. and WYND, J.G., 1965, Stratigraphic nomenclature of the Iranian oil consortium Agreement Area: American Association of Petroleum Geologists, Bulletin, 49, 2182–2245.
[40] JEŽ, J., OTONIČAR, B., FUČEK, L., and OGORELEC, B., 2011, Late Cretaceous sedimentary evolution of a northern sector of the Adriatic Carbonate Platform (Matarsko Podolje, SW Slovenia): Facies, 57(3), 447–468.
[41] LÉZIN, C., ANDREU, B., ETTACHFINI, E.M., WALLEZ, M.J., LEBEDEL, V., and MEISTER, C., 2012, The upper Cenomanian–lower Turonian of the Preafrican Trough, Morocco: Sedimentary Geology, 245–246, 1–16.
[42] LUCI, L., 2010, Encrusting patterns and life habit of Mesozoic trigonioids: a case study of Steinmanella quintucoensis (Weaver) from the Early Cretaceous of Argentina: Lethaia, 43(4), 529–544.
[43] MAHDI, T.A. and AQRAWI, A.A., 2018, Role of facies diversity and cyclicity on the reservoir quality of the mid-Cretaceous Mishrif Formation in the southern Mesopotamian Basin, Iraq: Geological Society, London, Special Publications, 435(1), 85–105.
[44] MALAK, Z.A. and AL-BANNA, N.Y., 2014, Sequence stratigraphy of Aqra Formation (Late Upper Campanian–Maastrichtian) in Geli Zanta corge, Northern Iraq: Arabian Journal of Geosciences, 7(3), 971–985.
[45] Meriç, E., Görmüş, M., 2001, The genus Loftusia: Micropaleontology, 47, 1-71.
[46] MORO, A., VELIĆ, I., MIKUŽ, V., and HORVAT, A., 2018, Microfacies characteristics of carbonate cobble from Campanian of Slovenj Gradec (Slovenia): implications for determining the Fleuryana adriatica De Castro, Drobne and Gušić paleoniche and extending the biostratigraphic range in the Tethyan real m: Rudarsko-geološko-naftni zbornik, 33(4), 1–12.
[47] MOUTHEREAU, F., LACOMBE, O., and VERGÉS, J., 2012, Building the Zagros collisional orogen: timing, strain distribution and the dynamics of Arabia/Eurasia plate convergence: Tectonophysics, 532, 27–60.
[48] MÜLAYIM, O., YILMAZ, İ.Ö., ÖZER, S., SARI, B., and TASLI, K., 2020, A Cenomanian–Santonian rudist–bearing carbonate platform on the northern Arabian Plate, Turkey: facies and sequence stratigraphy: Cretaceous Research, 110, 104–414.
[49] NAVARRO-RAMIREZ, J.P., BODIN, S., CONSORTI, L., and IMMENHAUSER, A., 2017, Response of western South American epeiric-neritic ecosystem to middle Cretaceous Oceanic Anoxic Events: Cretaceous Research, 75, 61–80.
[50] NEBELSICK, J. H., BASSI, D.. and LEMPP, J., 2013, Tracking paleoenvironmental changes in coralline algal-dominated carbonates of the Lower Oligocene Calcareniti di Castelgomberto formation (Monti Berici, Italy): Facies, 59, 133–148.
[51] NEBELSICK, J.H., BASSI, D., and RASSER, M.W., 2011, Microtaphofacies: Exploring the Potential for Taphonomic Analysis in Carbonates, In: Allison, P.A., and Bottjer, D.J. (Eds.), Taphonomy. Aims and Scope Topics in Geobiology Book Series, Springer, Dordrecht, 32, 337–373.
[52] ÖZER, S., EL-SOROGY, A.S., AL-DABBAGH, M.E., and AL-KAHTANY, K., 2019, Campanian–Maastrichtian unconformities and rudist diagenesis, Aruma Formation, central Saudi Arabia: Arabian Journal of Geosciences, 12(2), 1–34.
[53] PARHAM, S., PIRYAEI, A.R., GHORBANI, M., and MOUSSAVI-HARAMI, R., 2019, Paleogeographic evolution of the Maastrichtian deposits in the eastern Fars area (Zagros, Iran) using high-resolution sequence stratigraphic analysis: Carbonates and Evaporites, 34(2), 315–334.
[54] PLEŞ, G., BUCUR, I.I., and SĂSĂRAN, E., 2016, Depositional environments, facies and diagenesis of the Upper Jurassic–Lower Cretaceous carbonate deposits of the Buila-Vânturariþa Massif, Southern Carpathians (Romania): In Annales Societatis Geologorum Poloniae, 86, 165–183.
[55] PLEŞ, G., OPRIŞA, A., BUCUR, I.I., SĂSĂRAN, E., MIRCESCU, C.V., OLTEAN, G., and IACOB, R.G., 2019, The central-western Getic Carbonate Platform: Upper Jurassic to Lower Cretaceous biostratigraphy and sedimentary evolution of the Cioclovina–Băniţa sector (Southern Carpathians, Romania). Facies, 65(3), 1–32. [56] POMAR, L., BRANDANO, M., and WESTPHAL, H., 2004, Environmental factors influencing skeletal grain sediment associations: a critical review of Miocene examples from the western Mediterranean: Sedimentology, 51(3), pp.627-651.
[57] POMAR, L. and KENDALL, C., 2008, Architecture of carbonate platforms: a response to hydrodynamics and evolving ecology. In Controls on carbonate platform and reef development, SEPM Special Publication, 89, 187–216.
[58] SADOONI, F.N., 2018, Impact of the demise mechanisms of the Cretaceous rudist buildups in the Arabian Plate on their reservoir characteristics: Carbonates and Evaporites, 33(3), 465–476.
[59] SAMANKASSOU, E., 2002, Cool-water carbonates in a paleoequatorial shallow-water environment: The paradox of the Auernig cyclic sediments (Upper Pennsylvanian, Carnic Alps, Austria-Italy) and its implications: Geology, 30(7), 655–658.
[60] SANDERS, D., 1999, Shell disintegration and taphonomic loss in rudist biostromes: Lethaia, 32(2), 101–112.
[61] SANDERS, D. and BARON-SZABO, R.C., 1997, Coral-rudist bioconstructions in the Upper Cretaceous Haidach section (Gosau Group; Northern Calcareous Alps, Austria): Facies, 36(1), 69–89. [62] SANDERS, D., LUKESCH, M., RASSER, M., and SKELTON, P., 2007, Shell beds of diceratid rudists ahead of a law-energy gravelly beach (tithonian, northern calcareous alps, austria): palaeoecology and taphonomy: Austrian Journal of Earth Sciences, 100, 186–199.
[63] SANDERS, D. and PONS, J.M., 1999, Rudist formations in mixed siliciclastic-carbonate depositional environments, Upper Cretaceous, Austria: stratigraphy, sedimentology, and models of development: Palaeogeography, Palaeoclimatology, Palaeoecology, 148(4), 249–284.
[64] SCHUMANN, D., 2000. Paleoecology of late Cretaceous rudist settlements in Central Oman, In: ALSHARHAN A.S., SCOTT, R.W. (Eds.) Middle East models of Jurassic/Cretaceous carbonate systems, SEPM Special Publication, Suite, 69, 143–153.
[65] SIMONE, L., CARANNANTE, G., RUBERTI, D., SIRNA, M., SIRNA, G., LAVIANO, A., and TROPEANO, M., 2003, Development of rudist lithosomes in the Coniacian–Lower Campanian carbonate shelves of central-southern Italy: high-energy vs low-energy settings: Palaeogeography, Palaeoclimatology, Palaeoecology, 200(1-4), 5–29.
[66] SILVESTRI, G., BOSELLINI, F.R., and NEBELSICK, J.H., 2011, Microtaphofacies analysis of lower Oligocene turbid-water coral assemblages: Palaios, 26, 805–820.
[67] SOLAK, C., TASLI, K., and KOÇ, H., 2017, Biostratigraphy and facies analysis of the Upper Cretaceous–Danian? platform carbonate succession in the Kuyucak area, western Central Taurides, S Turkey: Cretaceous Research, 79, 43–63.
[68] STEIN, M., ARNAUD-VANNEAU, A., ADATTE, T., FLEITMANN, D., SPANGENBERG, J.E., and FOLLMI, K.B., 2012, Palaeoenvironmental and palaeoecological change on the northern Tethyan carbonate platform during the Late Barremian to earliest Aptian: Sedimentology 59, 939–963.
[69] READ, J.F., 1982, Carbonate platforms of passive (extensional) continental margins: types, characteristics and evolution: Tectonophysics 81, 195–212.
[70] READ, J.F., 1985, Carbonate platform facies models: AAPG Bulletian, 69, 1–21.
[71] RUBERTI, D., 1997, Facies analysis of an Upper Cretaceous high-energy rudist-dominated carbonate ramp (Matese Mountains, central-southern Italy): subtidal and peritidal cycles: Sedimentary Geology, 113(1-2), 81–110.
[72] RUBERTI, D., CARANNANTE, G., SIMONE, L., SIRNA, M., and SIRNA, G., 2007, Sedimentary processes and biofacies of Late Cretaceous carbonate low energy ramp systems (Southern Italy): SEPM (Society for Sedimentary Geology), 87, 57–70.
[73] RUBERTI, D. and TOSCANO, F., 2002, Microstratigraphy and taphonomy of rudist shell concentrations in Upper Cretaceous limestones, Cilento area (central-southern Italy): Geobios, 35, 228–240.
[74] RUBERTI, D., TOSCANO, F., CARANNANTE, G., and SIMONE, L., 2006, Rudist lithosomes related to current pathways in Upper Cretaceous temperate-type, inner shelves: a case study from the Cilento area, southern Italy: Geological Society, London, Special Publications, 255(1), 179–195.
[75] VAZIRI-MOGHADDAM, H., SAFARI, A., and TAHERI, A., 2005, Microfacies, paleoenvironments and sequence stratigraphy of the Tarbur Formation in Kherameh area, SW Iran: Carbonates and Evaporites, 20(2), 131–137.
[76] VILLALONGA, R., BOIX, C., FRIJIA, G., PARENTE, M., BERNAUS, J.M., and CAUS, E., 2019, Larger foraminifera and strontium isotope stratigraphy of middle Campanian shallow-water lagoonal facies of the Pyrenean Basin (NE Spain): Facies. 65, 1–20.
[77] Wynd, A.G., 1965, Biofacies of the Iranian oil consortium agreement area (I.O.O.C) report No. 1082, unpublished paper.