• List of Articles Epigenetic

      • Open Access Article

        1 - Mineralogy and mineral chemistry of Pb- Ag- (Zn-Cu-Ba) Ravanj mining district, North of Delijan
        Majid Ghasemi siani Fateme Isaabadi
        The Ravanj ore deposit in the North of Delijan formed in the sedimentary host rocks. This ore mineralization system is controlled by normal faults, and mineralization occurs as massive, laminate, open space fillings, breccia and hydrothermal vein/veinlets ore bodies con More
        The Ravanj ore deposit in the North of Delijan formed in the sedimentary host rocks. This ore mineralization system is controlled by normal faults, and mineralization occurs as massive, laminate, open space fillings, breccia and hydrothermal vein/veinlets ore bodies consisting of galena, sphalerite, fahlore group minerals, pyrite, chalcopyrite, dolomite, calcite, ankerite, barite, and quartz. Sulfide ore mineralization occurred within two mineralization horizons consisting of the massive-breccia ore horizon hosted by massive upper limestone (Km2) and layered sulfide ore horizon in middle shale (Ks2) and lower thin bedded limestone (Km1) as syn-sedimentary to epigenetic mineralization. Dolomitization is the main alteration related to mineralization and occurs adjacent to normal fault and consists of diagenetic and two hydrothermal dolomites. Hydrothermal dolomites are rich in iron. The ankrite shows that the ore hydrothermal fluid was Fe-rich. Chemistry of galena II and sphalerite II show that these minerals have a tendency to tetrahedrite-tennantite side which are consistent with presence of fahlore mineral incluisions in the microscopic studies. High Cd content in sphalerite and the presence of acanthite show that fluid mineralization had low temperature. According to the evidence such as mineralogy, mineral chemistry, ore texture and structures, and structural studies and combining these results with geochemistry, fluid inclusion and isotope geochemistry, the Ravanj ore deposit can be considered as an Irish-type Zn- Pb deposit. Manuscript profile
      • Open Access Article

        2 - Designing a Genetic Model of Brand Identity: A New Approach to Higher Education Brand Management
        azade Fatemifar Naser Azad Abdollah Naami adel fatemi
        In a competitive and complex market of higher education, universities must adopt strategies to maintain and improve their competitiveness. They need to create competitive advantage through a unique set of features, and having a unique identity is vital to differentiate More
        In a competitive and complex market of higher education, universities must adopt strategies to maintain and improve their competitiveness. They need to create competitive advantage through a unique set of features, and having a unique identity is vital to differentiate and attract students and staff. The purpose of this study was to identify the effective components and design a brand identity model based on the concept of brand DNA in non-governmental universities. Methodology, In terms of purpose, was applied research and exploratory in nature which exclusively was conducted by the systematic grounded theory .The research population includes related academicians and experts of marketing and branding and the managers of universities. The research data were collected through in depth semi structured interviews. Judgmental sampling was used. To determine sample size continued to reach the theoretical saturation. And finally 13 interviews were conducted. Open, axial and selective coding was used to analyze the data. The components of data analysis in 6 main category, 11 main categories and 43 subcategories including causal conditions, contextual conditions internal factors and visual identity, axial phenomenon, intervening conditions, strategies ,outcome were categorized. The findings suggest that having a strong and integrated brand identity in higher education is essential and requires a comprehensive and coherent genetic infrastructure and approach. Manuscript profile
      • Open Access Article

        3 - Physiochemical characteristics of oOre-bearing fluids for celestite occurrence in the Zagros fold-thrust belt: using microthermometry studies
        رضوانه  حمیدی Hojjat Ollah Safari مهاسا  روستایی
        Oilgocene-Miocene celestite occurrences are observed across the carbonate-evaporite formations of Asmari and Gachsaran in the Zagros fold - thrust belt. The aim of this research is the study of fluid inclusions in our celestite deposits (Tortab, Tarak, Likak and Babamoh More
        Oilgocene-Miocene celestite occurrences are observed across the carbonate-evaporite formations of Asmari and Gachsaran in the Zagros fold - thrust belt. The aim of this research is the study of fluid inclusions in our celestite deposits (Tortab, Tarak, Likak and Babamohamad) to reveal the nature of ore-forming fluids. Abundant structures including: geodic and vein-like structures as open-space filling along with replacement textures like mosaic and vein-like in a carbonate matrix are present. Moreover, celestite, calcite, gypsum and anhydrite are observed as the major minerals in this deposits. Based on petrographic studies, 5 groups of fluid inclusions were recognised, which are categorized as: Liquid mono phase (L), vapour mono phase (V), liquid-rich two phase (LV), vapor-rich two phase (VL) and multi-phase fluids (LVS). The results obtained from the study of microthermometry data show 134.3 to 291.8°C as homogenisation temperatures and salinities of 2.5-18.17 wt%, NaCl equ, all are involved in forming celestite. Based on the results of microthermometry data, it can be deduced that formation mechanism of celestite is resulted from reaction between fluid and rocks of the area. Moreover, tectonic activities such as uplift and diagenesis of beds along with dissolution of minerals have caused release of strontium in the fluids responsible for ore-forming. This has generally undertaken by two fluids of meteoric and brine origins over different stages of ore-formation, replacing anhydrite with strontium at high temperatures during late- diagenetic and epigenetic processes. Manuscript profile
      • Open Access Article

        4 - Geology, mineralization and genesis of the Madabad celestite deposit, south Zanjan
        مهسا  نوری Hossein Kouhestani قاسم  نباتیان میرعلی اصغر  مختاری افشین  زهدی
        Rock units in the Madabad celestite deposit are composed of medium to thick-bedded and massive limestone interlayered with marly limestone and marl units of the Qom Formation (lower Miocene). Mineralization occurs as lens-shaped orebody, hosted by limestone units of mem More
        Rock units in the Madabad celestite deposit are composed of medium to thick-bedded and massive limestone interlayered with marly limestone and marl units of the Qom Formation (lower Miocene). Mineralization occurs as lens-shaped orebody, hosted by limestone units of member of the Qom Formation usually crosscutting bedding of the host rocks. Three stages of mineralization occurred in the Madabad deposit. The first stage is characterized by calcite formation during syn-depositional to syn-diagenesis processes. The second stage is related to hydrothermal processes that are distinguished by formation of fine-grained and sugary crystals of massive stage-1 celestite, vein-veinlets of coarse-grained stage-2 celestite along with minor strontianite and barite, coarse-grained euhedral crystals of stage-3 celestite with vug infilling texture, and finally late-stage quartz and calcite vein-veinlets. Stage three includes supergene processes. Hydrothermal alteration includes dolomitization, calcitization and silicification. Celestite along with minor strontianite and barite are ore minerals, and calcite, dolomite, quartz and iron oxides-hydroxides are gangue minerals at Madabad. The ore minerals show vein-veinlets, vug infilling, brecciated and cataclastic textures. Microthermometric measurements of two-phase liquid-rich fluid inclusions hosted in celestite II indicate that salinities values range from 6 to 18 wt.% NaCl equiv. (avg. 10.6 wt.% NaCl equiv.). These inclusions have homogenization temperatures range from 248 to 365 °C, with an average of 278 °C. These data indicate a minimum trapping depth of 510 m for the Madabad deposit. Sr was originated from evaporate units within the marly parts of the Qom Formation and volcanic units of the Karaj Formation. Characteristics of the Madabad deposit are similar to epigenetic replacement celestite deposits. Manuscript profile
      • Open Access Article

        5 - Structural evolution of the southern Natanz region and its role in the distribution and concentration of Pb-Zn mineralization
        Firouzeh Shavvakhi Saeed Madanipour M. Tadayon Ebrahim Rastad M.J. Kupaei
        The studied area is structurally located in the western part of the Central Iranian structural zone atthe southwestern termination of the Qom-Zefreh Fault. Our structural data represent the older generation of E-W to NW-SE trending thrust faults that juxtapose Permia More
        The studied area is structurally located in the western part of the Central Iranian structural zone atthe southwestern termination of the Qom-Zefreh Fault. Our structural data represent the older generation of E-W to NW-SE trending thrust faults that juxtapose Permian- Triassic (Nayband and Shotori Formations) over younger rock units. Most of the thrust faults have been crossed cut with the younger generation of the strike-slip fault system. Major thrust faulting of the area occurred during post Late Cretaceous time. The final post Oligocene strike slip faulting related to the activation of the Qom- Zefreh fault overprinted and crossed cut older structural features. Our economic geological studies in the south Natanz area represent syngeneic strati bond or Sedex-Like type Pb-Zn epigenetic occurrence of these deposits in Permian-Triassic carbonates and barite developed in the Lower Cretaceous carbonate and clastics. The ore deposit development in Permian-Triassic Carbonates have occurred along thrust faults and then redistributed along strike slip faults with normal component. Therefore, genetically, stratiform deposits developed in the Lower Cretaceous carbonates and clastics (Yazdan and Pinavand Ore deposit) occurred in a regional early Cretaceous extensional regime. However, epigenetic deposits developed in Permian-Triassic carbonates (Changarzeh deposit) were generated during the regional post Late Cretaceous compressional regime and redistributed during post Oligocene strike slip deformation. Manuscript profile