Mineralogy and mineral chemistry of Pb- Ag- (Zn-Cu-Ba) Ravanj mining district, North of Delijan
Subject Areas :Majid Ghasemi siani 1 , Fateme Isaabadi 2
1 -
2 - University of Tehran
Keywords: Dolomitization, Ravanj, Syngentic- epigenetic, Mineral chemistry.,
Abstract :
The Ravanj ore deposit in the North of Delijan formed in the sedimentary host rocks. This ore mineralization system is controlled by normal faults, and mineralization occurs as massive, laminate, open space fillings, breccia and hydrothermal vein/veinlets ore bodies consisting of galena, sphalerite, fahlore group minerals, pyrite, chalcopyrite, dolomite, calcite, ankerite, barite, and quartz. Sulfide ore mineralization occurred within two mineralization horizons consisting of the massive-breccia ore horizon hosted by massive upper limestone (Km2) and layered sulfide ore horizon in middle shale (Ks2) and lower thin bedded limestone (Km1) as syn-sedimentary to epigenetic mineralization. Dolomitization is the main alteration related to mineralization and occurs adjacent to normal fault and consists of diagenetic and two hydrothermal dolomites. Hydrothermal dolomites are rich in iron. The ankrite shows that the ore hydrothermal fluid was Fe-rich. Chemistry of galena II and sphalerite II show that these minerals have a tendency to tetrahedrite-tennantite side which are consistent with presence of fahlore mineral incluisions in the microscopic studies. High Cd content in sphalerite and the presence of acanthite show that fluid mineralization had low temperature. According to the evidence such as mineralogy, mineral chemistry, ore texture and structures, and structural studies and combining these results with geochemistry, fluid inclusion and isotope geochemistry, the Ravanj ore deposit can be considered as an Irish-type Zn- Pb deposit.
آقانباتی، ع.، 1385. زمین¬شناسی ایران. انتشارات سازمان زمین شناسی و اکتشاف معدنی کشور، 586.
مدبری، س.، 1374. زمین¬شناسی، آنالیز رخساره، کانی¬شناسی، ژئوشیمی و ژنز کانسار سرب و نقره راونج، ایران مرکزی. پایان¬نامه کارشناسی ارشد، دانشگاه تربیت مدرس، تهران، 184.
عیسی¬آبادی، ف.، 1393. کانی¬شناسی، ژئوشیمی و خاستگاه کانسار سرب و نقره راونج دلیجان و تعیین موقعیت چینه¬شناختی کانه¬زایی. پایان¬نامه کارشناسی ارشد، دانشگاه تهران، تهران، 151.
علی¬آبادی، م.آ.، 1379. مطالعات ژئوشیمی و کانی¬شناسی و ژنز کانسار سرب و نقره راونج، دلیجان، ایران مرکزی. پایان¬نامه کارشناسی ارشد، دانشگاه شیراز، 146.
Banks, D.A., Boyce, A.J. and Samson, I.M., 2002. Constraints on the origins of fluids forming Irish Zn-Pb-Ba deposits: Evidence from the composition of fluid inclusions. Economic Geology, 97, 471−480.
Billström, K., Broman, C., Schneider, J., Pratt, W. and Skogsmo, G., 2012. Zn-Pb Ores of Mississippi Valley Type in the Lycksele-Storuman District, Northern Sweden: A Possible Rift-Related Cambrian Mineralisation Event, Minerals, 2, 169–207.
Bouabdellah, M., Sangster, D.F., Leach, D.L., Brown, A.C., Johnson, C.A. and Emsbo, P., 2012. Genesis of the touissit-bou beker Mississippi valley-type district (Morocco-Algeria) and its relationship to the Africa-Europe collision. Economic Geology, 107, 117–146.
Cook, N.J. and Ciobanu, C.L., 2004. Bismuth tellurides and sulphosalts from the Larga hydrothermal system, Metaliferi Mts, Romania: paragenesis and genetic significance. Mineralogy Magazine, 68, 301–321.
Cook, N.J., Spry, P.G. and Vokes, F.M., 1998. Mineralogy and textural relationships among sulphosalts and related minerals in the Bleikvassli Zn‐Pb‐(Cu) deposit, Nordland, Norway. Mineralium Deposita, 34, 35– 56.
Craig, J.R. and Scott, S.D., 1974. Sulfide Phase Equilibria, in Sulfide Mineralogy: Short Course Notes, P.H. Ribbe, Ed., Mineralogical Society of America, Washington, DC, 1, Chap. 5, 1–109.
Davies, G.R. and Smith L.B., 2006. Structurally controlled hydrothermal dolomite reservoir facies: An overview. AAPG bulletin, 90, 1641–1690.
de Oliveira, S.B., Leach, D.L., Juliani, C., Monteiro, L.V.S. and Johnson, C.A., 2019. The Zn-Pb Mineralization of Florida Canyon, an Evaporite-Related Mississippi Valley-Type Deposit in the Bongara District, Northern Peru. Economic Geology, 114, 1621–1647
Ehya, F., Lotfi, M. and Rasa, I., 2010. Emarat carbonate-hosted Zn–Pb deposit, Markazi Province, Iran: A geological, mineralogical and isotopic (S, Pb) study. Journal of Asian Earth Sciences, 37, 186–194.
Elliott, H.A.L., Gernon, T.M., Roberts, S., Boyce, A.J. and Hewson, C., 2019. Diaterms act as fluid condition for Zn-Pb mineralization in the SW Irish ore field. Economic Geology, 114, 117–125.
Everett, C.E., Rye, D.M. and Ellam, R.M., 2003. Source or sink? An assessment of the role of the Old Red Sandstone in the genesis of the Irish Zn-Pb deposits. Economic Geology, 98, 31–50.
Frenze, M., Hirsch, T. and Gutzmer, J., 2016. Gallium, germanium, indium, and other trace and minor elements in sphalerite as a function of deposit type A meta-analysis. Ore Geology Reviews, 76, 52–78.
Ghazban, F., McNutt, R.H. and Schwarcz, H.P., 1994. Genesis of sediment-hosted Zn-Pb-Ba deposits in the Iran Kouh district, Esfahan area, west-Central Iran. Economic Geology, 89, 1262–1278.
Ghazi, A.M., Hassanipak, A.A., Mahoney, J.J. and Duncan, R.A., 2004. Geochemical characteristics, 40Ar–39Ar ages and original tectonic setting of the Band-e-Zeyarat/Dar Anar ophiolite, Makran accretionary prism, S.E. Iran. Tectonophysics, 393, 175–196.
Goodfellow, W.D. and Lydon, J.W., 2007a. Sedimentary exhalative (SEDEX) deposits. Mineral deposits of Canada: A synthesis of major deposit types, district metallogeny, the evolution of geological provinces, and exploration methods: Geological Association of Canada, Mineral Deposits Division, Special Publication, 163–183.
Grandia, F., Cardellach, E., Canals, A. and Banks, D. A., 2003. Geochemistry of the fluids related to epigenetic carbonate-hosted Zn-Pb deposits in the Maestrat basin, eastern Spain: fluid inclusion and isotope (Cl, C, O, S, Sr) evidence. Economic Geology, 98, 933–954.
Hitzman, M.W., Redmond, P.B. and Beaty, D.W., 2002. The carbonate-hosted Lisheen Zn-Pb-Ag deposit. County Tipperary, Ireland, 97, 1627–1655.
Jia, L., Cai, C., Yang, H., Li, H., Wang, T., Zhang, B., Jiang, L. and Tao, X., 2015. Thermochemical and bacterial sulfate reduction in the Cambrian and Lower Ordovician carbonates in the Tazhong Area, Tarim Basin, NW China: evidence from fluid inclusions, C, S, and Sr isotopic data. Geofluids, 15, 421–437.
Kerr, N., 2013. Geology of the Stonepark Zn-Pb prospects, County Limerick, Ireland. M.Sc. thesis, University of Colorado, 131.
Kyne, R., Torremans, K., Güven, J., Doyle, R. and Walsh, J., 2019. 3-D Modeling of the Lisheen and Silvermines deposits, County Tipperary, Ireland: Insights into structural controls on the formation of Irish Zn-Pb deposits. Economic Geology, 114(1), 93–116.
Leach, D.L., Bradley, D.C., Huston, D., Pisarevsky, S.A., Taylor, R.D. and Gardoll, S.J., 2010. Sediment-hosted lead-zinc deposits in Earth history. Economic Geology, 105, 593–625.
Leach, D.L., Sangster, D.F., Kelley, K.D., Large, R.R., Garven, G., Allen, C.R., Gutzmer, J. and Walters, S., 2005. Sediment hosted lead-zinc deposits: A global perspective. Economic Geology, 100th Anniversary, 561–607.
Leavitt, W. D., Halevy, I., Bradley, A. S. and Johnston, D. T., 2013. Influence of sulfate reduction rates on the Phanerozoic sulfur isotope record. Proceedings of the National Academy of Sciences of the United States of America, 110, 11244–11249.
Lee, M.J. and Wilkinson, J.J., 2002. Cementation, hydrothermal alteration, and Zn-Pb mineralization of carbonate breccia’s in the Irish midlands: textural evidence from the Cooleen zone, near Silvermines, county Tipperary. Economic Geology, 97, 653–662.
Love, L.G., 1962. Biogenic primary sulfide of the Permian Kupferschiefer and marl slate. Economic Geology, 57, 350–366.
Machel, H.G., 2001. Bacterial and thermochemical sulfate reduction in diagenetic settings-old and new insights. Sediment Geology, 140, 143–175.
Mavrogenes, J.A., Hagni, R.D. and Dingess, P.R., 1992. Mineralogy, paragenesis, and mineral zoning of the West Fork mine, Viburnum Trend, Southeast Missouri. Economic Geology, 87, 113–124.
Momenzadeh, M., 1976. Stratabound lead–zinc ores in the lower Cretaceous and Jurassic sediments in the Malayer–Esfahan district (west central Iran), lithology, metal content, zonation and genesis [Unpublished Ph.D. thesis]: Heidelberg, University of Heidelberg, 300.
Nejadhadad, M., Taghipour, B. and Karimzadeh Somarin, A., 2017. The Use of Univariate and Multivariate Analyses in the Geochemical Exploration, Ravanj Lead Mine, Delijan, Iran, Minerals, 7, 212–228..
Nejadhadad, M., Taghipour, B., Zarasvandi, A., and Karimzadeh Somarin, A., 2016. Geological, geochemical, and fluid inclusion evidences for the origin of the Ravanj Pb–Ba–Ag deposit, north of Delijan city, Markazi Province, Iran, Turkish Journal of Earth Sciences, 25 (2), 179–200.
Pearce, M.A., Timms, N.E., Hough, R.M. and Cleverley, J.S., 2013. Reaction mechanism forthe replacement of calcite by dolomite and siderite: implications for geochemistry, microstructure and porosity evolution during hydrothermal mineralization. Contribution to Mineralogy and Petrology, 166, 995–1009.
Pfaff, K.p., Hildebrandt, L., Leach, D., Jacob, D.E. and Markl, G., 2011. Formation of the Wiesloch Mississippi Valley-type Zn-Pb-Ag deposit in the extensional setting of the Upper Rhinegraben, SW Germany. Mineralium Deposita, 45, 647–666.
Rajabi, A., Rastad, E. and Cant, C., 2012. Metallogeny of Cretaceous carbonate-hosted Zn-Pb deposits of Iran: Geotectonic setting and data integration for future mineral exploration. International Geology Review, 54, 1649–1672.
Rajabi, A., Rastad, E. and Cant, C., 2013. Metallogeny of Permian-Triassic carbonate-hosted Zn-Pb and F deposits of Iran: Areview for future mineral exploration. Australian Journal of Earth Sciences. An International Geoscience Journal of Geological Society of Australia, 60, 197–216.
Rddad, L. and Bouhlel, S., 2016. The Bou Dahar Jurassic carbonate-hosted Pb–Zn–Ba deposits (Oriental High Atlas, Morocco): Fluid-inclusion and C–O–S–Pb isotope studies. Ore Geology Reviews, 72, 1072–1087.
Reed, C.P. and Wallace, M.W., 2001. Diagenetic evidence for an epigenetic origin of the Courtbrown Zn-Pb deposit, Ireland: Mineralium Deposita, 36, 428–441.
Reed, C.P. and Wallace, M.W., 2004. Zn-Pb mineralisation in the Silvermines district, Ireland: a product of burial diagenesis, Mineralium Deposita, 39, 87–102.
Sack, R. O., Kuehner S. M. and Hardy, L. S., 2002. Retrograde Ag-enrichment in fahlores from the Coeur d’Alene mining district, Idaho, USA. Mineralogy Magazine, 66, 215–229.
Sack, R.O., Fredericks, R., Hardy, L.S. and Ebel, D.S., 2005. Origin of high-Ag fahlores from the Galena Mine, Wallace, Idaho, U.S.A. American Mineralogist, 90, 1000–1007.
Schwartz, M., 2000, Cadmium in Zinc Deposits: Economic Geology of a Polluting Element. Economic Geology Review, 42, 445–469.
Sternbach, C.A. and Friedman G, M., 1984. Ferroan carbonates formed at depth require prosity well-log correction: Hunton Group, deep Anadarko Basin (Upper Ordovician to lower Devonian) of Oklahoma and Texas: Transaction of Southwest section. American Association of Petrology and Geology, 68, 167-171.
Ströbele, F., Hildebrandt, L. H., Baumann, A., Pernicka, E. and Markl, G., 2015. Pb isotope data of Roman and medieval objects from Wiesloch near Heidelberg, Germany. Archaeological and Anthropological Sciences, 7, 465–472.
Turner, E., 2011. Structural and stratigraphic controls on carbonate-hosted base metal mineralization in the mesoproterozoic Borden basin (Nanisivik district), Nunavut. Economic Geology, 106, 1197–1223.
Velasco, F., Herrero. J.M., Yusta. I., Alonso. J.A., Seebold. I. and Leach. D., 2003. Geology and geochemistry of the Reocin zinc-lead deposit, Basque-Cantabrian Basin, Northern Spain. Economic Geology, 98, 1371–1396.
Walshaw, R.D., Menuge, J.F. and Tyrrell, S., 2006. Metal sources of the Navan carbonate-hosted base metal deposit, Ireland: Nd and Sr isotope evidence for deep hydrothermal convection. Mineralium Deposita, 41, 803–819.
Whitney, D.L., and Evans, B.V., 2010. Abbreviations for names of rock-forming minerals, American Mineralogist, 95, 185–187.
Wilkinson, J.J., 2003. On diagenesis, dolomitisation and mineralization in the Irish Zn-Pb orefield. Mineralium Deposita, 38, 968–983.
Wilkinson, J.J., 2014. Sediment-hosted zinc-lead mineralization: processes and perspectives. Treatise on Geochemistry 2nd edition, 219–249.
Wilkinson, J., Eyre. S. and Boyce, A., 2005. Ore-forming processes in Irish-type carbonate-hosted Zn-Pb deposits: Evidence from mineralogy, chemistry, and isotopic composition of sulfides at the Lisheen mine. Economic Geology, 100, 63–86.
Ye, L., Cook, N.J., Ciobanu, C.L., Liu, Y.P., Zhang, Q., Gao, W., Yang, Y.L. and Danyushevsky, L.V., 2011. Trace and minor elements in sphalerite from base metal deposits in South China: a LA-ICPMS study. Ore Geology Review, 39, 188–217.
Yesares, L., Drummond, D.A., Hollis, S.P., Doran, A.L., Menuge, J, F., Boyes, A.J., Blakeman, R.J. and Ashton, J.H., 2019. Coupling mineralogy, textures, stable and radiogenic isotopes in identifying ore-forming processes in Irish-type carbonate-hosted Zn–Pb deposits. Minerals, 9, 335, https://doi.org/10.3390/min9060335.