• List of Articles تاير

      • Open Access Article

        1 - Application of Epsilon Variable-Multi Objective Genetic Algorithm for Multi-Objective Optimal Power Flow with TCSC
        E. Afzalan M. Joorabian
        This paper ε-multi objective genetic algorithm variable (εV-MOGA) to optimize cost of generation, emission and active power transmission loss of flexible ac transmission systems (FACTS) device-equipped power systems. In the proposed approach, optimal power flow problem More
        This paper ε-multi objective genetic algorithm variable (εV-MOGA) to optimize cost of generation, emission and active power transmission loss of flexible ac transmission systems (FACTS) device-equipped power systems. In the proposed approach, optimal power flow problem is formulated as a multi-objective optimization problem. FACTS devices considered include thyristor controlled series capacitor (TCSC). The proposed approach has been examined and tested on the modified IEEE 57-bus test system. The results obtained from the proposed approach have been compared with those obtained from nondominated sorting genetic algorithm-II, multi-objective differential evolution. Manuscript profile
      • Open Access Article

        2 - Recycling of Waste Tires
        Zahra Khoubi-Arani
        Waste tires are the main source of waste rubbers. Their recycling raises environmental concerns due to the high volume of production as well as a very crosslinked and non-biodegradable structure. This leads to finding easy, low-cost, and energy-efficient methods for rec More
        Waste tires are the main source of waste rubbers. Their recycling raises environmental concerns due to the high volume of production as well as a very crosslinked and non-biodegradable structure. This leads to finding easy, low-cost, and energy-efficient methods for recycling waste tires. To now, many studies have been devoted to the improvement of conventional recycling methods and the introduction of new ones for the management of waste tires. Methods for recycling waste tires include retreading, incineration, pyrolysis, and grinding. The lifetime of a tire can be extended using the retreading process, in which the old tread is removed and a new one is inserted. The produced energy from the incineration of the waste tire can be used as a fuel source for steam, electrical energy, paper paste, paper, lime, and steel production. In the pyrolysis process, oil, gas, and char are produced through thermal decomposition. The main method of waste tire recycling is grinding for the incorporation of produced particles in the polymer matrices. The ambient and cryogenic grinding are the most conventional methods for grinding waste tires. The size reduction results in a higher specific area and better distribution of rubber particles in the matrix. The produced particles can be used as fillers in asphalt, concrete and glassy polymers. Manuscript profile