• List of Articles subduction

      • Open Access Article

        1 - Fractal analysis of the aftershocks of the 2013 Gosht-Saravan (M.7.8) earthquake, NE Makran
        Abdolreza Partabian Shoja Ansari Faride Jahandideh
        In this paper the fractal dimension of the aftershocks of the 2013 M 7.8 Gosht-Saravan earthquake and their relationship with the seismicity parameters (such as the b-value) and also the released seismic energies of the main shocks and the aftershocks are investigated. More
        In this paper the fractal dimension of the aftershocks of the 2013 M 7.8 Gosht-Saravan earthquake and their relationship with the seismicity parameters (such as the b-value) and also the released seismic energies of the main shocks and the aftershocks are investigated. The Gosht-Saravan main shock is an intraslab event with normal mechanism. No relationship between the Saravan fault and the main shock is observed. By examining the fractal dimension of the aftershocks and their relationship with the b-value it is confirmed that a linear seismic source (such as a subduction zone) exists. The slip ratio between the primary and secondary faults can be estimated by the fractal dimension. The calculated slip ratio indicates that a low portion of the slips may be related to the near surface fractures which can be verified by the shallow depth aftershocks. The earthquake occurrence in the intermediate depth, releases seismic energy and migrates to the near surface faults and fractures. The occurrence of aftershocks both near the hypocenter and at shallow depths can confirm the activity of these faults. The ratio of the total radiated seimic energy of the aftershocks to the radiated seimic energy of the main shock indicates that a high fraction of the energy related to the main shock and just a small fraction of the energy related to the aftershocks. Manuscript profile
      • Open Access Article

        2 - Geochemistry and mineral chemistry of ultramafic rocks in the Koopan area, south of Bavanat (Fars Province)
        Maryam  Zurmand Sangari Ahmad Ahmadi Khalaji Kamal  Noori Khankahdani Zahra Tahmasbi
        The studied area is located in the high Zagros zone and it is considered a part of the Neyriz ophiolite. In this area, the ophiolitic complex is small coloured melanges include radiolarite cherts and serpentinized ultrabasic rocks. The main lithological unit is serpen More
        The studied area is located in the high Zagros zone and it is considered a part of the Neyriz ophiolite. In this area, the ophiolitic complex is small coloured melanges include radiolarite cherts and serpentinized ultrabasic rocks. The main lithological unit is serpentinized ultrabasic rocks, which have a variety of colors from dark to light brown and dark to light green. These ultrabasic rocks have composed of olivine, pyroxene, amphibole, opaque, serpentine and spinel. Olivines have been highly altered to serpentine and pyroxenes to bastite. Based on whole rock chemistry, the studied rocks are basic and ultrabasic cumulates type (lherzolite-harzburgite) with a composition close to the average composition of the mid-ocean ridge basalt (MAR). Based on mineral chemistry, pyroxenes are calcic type and in the range of diopside and augite, and amphiboles are calcic and actinolite type. Pyroxenes have crystallized under conditions of low oxygen fugacity, temperature higher than 910 °C (1100 - 1200 °C) and pressure more than 2 kbar (2 to 10 kbar). Amphiboles have crystallized at a temperature below 700 °C and a pressure less than 1 kbar. Based on the geochemical characteristics and mineral chemistry, the ultrabasic rocks in the Koopan area were formed in a subduction zone. Manuscript profile
      • Open Access Article

        3 - Geochemistry of Central part of the Neo-Tethys Suture zone serpentinites (From NW Iran to Iraqi Zagros and Eastern Anatoly)
        monir modjarrad Mohsen Moayyed
        The subduction and closure of the vast Neo-Tethys ocean between the Arabian and Eurasian plates has left numerous ophiolitic traces, the unique position of Iran in its central part is noticeable. The lack of information, right on the border of Iran with Iraq and Turke More
        The subduction and closure of the vast Neo-Tethys ocean between the Arabian and Eurasian plates has left numerous ophiolitic traces, the unique position of Iran in its central part is noticeable. The lack of information, right on the border of Iran with Iraq and Turkey, due to security considerations, has so far prevented the overview of this suture zone in the northwestern border of Iran. Adding Gysian ophiolite in southern Urmia as a missing link in this stretch can partially cover this lack of information. A comparative study of whole rock chemistry of serpentinites in the central part of the Neo-Tethys ophiolites, considering several sectors from Iran (Kamyaran, Marivan and Gysian), Iraq (Penjwin and Mawat) and Turkey (Guleman and Osmanie) in this article, indicates that they belong to subducted serpentinites, whether they were originally formed in the fore-arc environment or the at abyssal oceanic environment. Composition of the serpentinites of the central part of the suture zone is similar to the average global serpentinites which have mostly lizardite/chrysotile. All of them show depletion of Mg resulting sea floor alteration during serpentinization. The mentioned point may be caused to data deviation from abyssal peridotites field. Considering that the transition metals contents the confirmed the above setting. Almost all of the studied serpentinites are from subducted type which indicates refertilization of LILE evidences as a result of rock/fluid interaction through serpentinization. Manuscript profile
      • Open Access Article

        4 - Geochemistry and petrogenesis of the subvolcanic domes of the northern domain of the Sabzevar ophiolitic belt, north east of Iran
        E. Mohammadi Gorji Ghasem Ghorbani Hadi Shafaii Moghadam
        Andesitic-dacitic subvolcanic domes of Nudeh Enghelab and Kuh Kamartang are located in the northern domains of the Sabzevar ophiolitic belt, and in the northeast part of the Central Iran structural zone. Geochemically, the studied rocks exhibit a metaluminous, calc-al More
        Andesitic-dacitic subvolcanic domes of Nudeh Enghelab and Kuh Kamartang are located in the northern domains of the Sabzevar ophiolitic belt, and in the northeast part of the Central Iran structural zone. Geochemically, the studied rocks exhibit a metaluminous, calc-alkaline to high k-calc-alkaline nature, and are enriched in LILE and LREE and depleted in HFSE, HREE and negative anomaly in TNT elements, and have formed in an environment related to subduction zone. With attention to their other geochemical characteristics, such as a silica content (SiO2>61wt%), Al2O3>15wt%, MgO<2.2wt%, Na2O>3.3wt%, Sr/Y>24, La/Yb>8, can be classified these rocks as high silica adakites. The petrographical, geochemical and isotopic ((87Sr/86Sr)i=0.7047-0.7045, ƐNdi=6.02-6.10) characteristics display that the studied high silica adakites have been originated from partial melting of subducted oceanic slab of Neo-Tethys (Sabzevar sea/ocean sub-branch) under the Turan plate in amphibolite to garnet amphibolite facies and during the ascent to high levels, they show very little assimilation and contamination with continental crust. Manuscript profile