Geochemistry and mineral chemistry of ultramafic rocks in the Koopan area, south of Bavanat (Fars Province)
Subject Areas :Maryam Zurmand Sangari 1 , Ahmad Ahmadi Khalaji 2 , Kamal Noori Khankahdani 3 , Zahra Tahmasbi 4
1 - Department of Geology, Faculty of Sciences, Lorestan University, Khorramabad, Iran
2 -
3 - Department of Geology, Shiraz Branch, Islamic Azad University, Shiraz, Iran
4 -
Keywords: ophiolite, Bavanat, High Zagros, subduction, ultrabasic rocks,
Abstract :
The studied area is located in the high Zagros zone and it is considered a part of the Neyriz ophiolite. In this area, the ophiolitic complex is small coloured melanges include radiolarite cherts and serpentinized ultrabasic rocks. The main lithological unit is serpentinized ultrabasic rocks, which have a variety of colors from dark to light brown and dark to light green. These ultrabasic rocks have composed of olivine, pyroxene, amphibole, opaque, serpentine and spinel. Olivines have been highly altered to serpentine and pyroxenes to bastite. Based on whole rock chemistry, the studied rocks are basic and ultrabasic cumulates type (lherzolite-harzburgite) with a composition close to the average composition of the mid-ocean ridge basalt (MAR). Based on mineral chemistry, pyroxenes are calcic type and in the range of diopside and augite, and amphiboles are calcic and actinolite type. Pyroxenes have crystallized under conditions of low oxygen fugacity, temperature higher than 910 °C (1100 - 1200 °C) and pressure more than 2 kbar (2 to 10 kbar). Amphiboles have crystallized at a temperature below 700 °C and a pressure less than 1 kbar. Based on the geochemical characteristics and mineral chemistry, the ultrabasic rocks in the Koopan area were formed in a subduction zone.
تاجور، ع.، خطیب، م.م. و زرین کوب، م.ح.، 1399. جایگاه تکتونوماگمایی دیابازها و جریانهای بازالتی افیولیت شمال مکران، جنوبشرقی ایران. فصلنامه زمینشناسی ایران، 14 (55)، 79-67.
رجبزاده، م.ع. و هدایتی، م.، 1399. نقش pH، ماده آلی و شدت هوازدگی بر روی ویژگیهای ژئوشیمیایی و کانی شناختی لاتریتهای نیکلدار در منطقه بوانات، استان فارس. زمینشناسی اقتصادی، 12 (26)، 433-466.
کامران، س.، احمدی خلجی، ا.، رضائی کهخائی، م. و طهماسبی، ز.، 1402. زمینشیمی و شیمیکانی سنگهای نفوذی گردنه آهوان، شمالشرق سمنان (ایران مرکزی). فصلنامه زمینشناسی ایران، 17 (65)، 17-1.
میرنژاد، ح. و بازآمد، م.، 1393. ارزيابي فراوانی و تغییرات عناصر پلاتینیوم و پالادیوم در کانیهای پیروکسن و کرومیت پیروکسنیتهای منطقه نیریز. فصلنامه زمینشناسی ایران، 8 (31)، 90-79.
Akinin, V.V., Miller, E.L. and Layer, P., 2005. Late Cretaceous modification of deep continental crust in the NE Paleo Pacific: additional evidence from Viliga lower crust xenoliths American Geophysical Union. Fall Meeting 2005, abstract id. V51D-1516, December 2005.
Ao, S. J., Xiao, W. J., Han, C. M., Mao, Q. G. and Zhang, J. E., 2010. Geochronology and geochemistry of early Permian mafic-ultramafic complexes in the Beishan area, Xinjiang, NW China: implications for late Paleozoic tectonic evolution of the southern Altaids. Gondwana Research, 18, 466-478.
Aoki, K. and Shiba, I., 1973. Pyroxnes from lherzolite inclusions of Itinome - gata Japan. Lithos, 6, 41-51.
Arvin, M., 1982. Petrology and geochemistry of ophiolites and associated rocks from the Zagros suture, Neyriz, Iran. Ph. D. thesis, London, London University.
Babaie, H.A., Babaei, A., Ghazi, A.M. and Arvin, M., 2006. Geochemical, 40Ar/39Ar age, and isotopic data for crustal rocks of the Neyriz ophiolite, Iran. Canadian Journal of Earth Sciences, 43, 57–70.
Beccaluva, L., Macciotta, G., Piccardo, G. B. and Zeda, O., 1989. Clinopyroxene composition of ophiolite basalts as petrogenetic indicator. Chemical Geology, 77,165-182.
Blundy, J. D. and Holland, T. J. B. 1990. Calcic amphibole equilibria and a new amphibole plagioclase geothermometer. Contributions to Mineralogy and Petrology, 104, 208-224.
Coleman, R. G., 1977. Ophiolites: ancient oceanic lithosphere?, Springer, Verlag, Berlin, 229.
Coltorti, M., Bondaiman, C., Faccini, B., Grégoire, M., O. Reilly, S.Y. and Powell, W., 2007. Amphiboles from suprasubduction and intraplate lithospheric mantle. Lithos, 99, 68-84.
Dana, J.D. 1985. Manual of Mineralogy. 20th edition. John Wiley and Sons, 596.
De La Roche, H., Leterrier Grandclaude, P. and Marchal, M., 1980. A classification of volcanic and plutonic rocks using R1-R2 diagram and major element analyses, its relationship with current nomenclature. Chemical Geology, 29, 183-210.
Foley, S.F. and Venturelli, G., 1989. High K2O rocks with high MgO, High SiO2 affinities, In: Crawford, A. J. (Ed.): Boninites and related rocks. Unwin Hyman London, 72-88.
France, L., Ildefonse, B., Koepke, J. and Bech, F., 2010. A new method to estimate the oxidation state basaltic series from microprobe analyse. Journal of Volcanology and Geothermal Research, 189, 340-346.
Gamble, R. P. and Taylor, L. A., 1980. Crystal/liquid partitioning augite: effects of cooling rate. Earth and Planetary Science Letters, 47, 21-33.
Gualda, G.A.R. and Vlach, S.R.F., 2007. The Serra da Graciosa A-type granites and syenites, southern Brazil Part 3: Magmatic evolution and post magmatic breakdown of amphiboles of the alkaline association. Lithos, 93, 328-339.
Helz, R.T., 1973. Phase reactions of basalts in their melting range at PH2O=5kb as a function of oxygen fugacity. Journal of petrology, 17, 139-193.
Hoshmandzade, A. and Sohili, M., 1990. Description of Geological Map of Eqhlid Sheet, Geological map of Iran, 1:250000 Series sheet G10, Geological survey of Iran.
Hugh, R.R., Hugh, R.J.I.N.Y.L.S. and Press, T., 1993. Using Geochemical Data: Evaluation, Presentation. 64-97.
Kamber, B.S., Ewart, A., Collerson, K.D., Bruce, M.C. and McDonald, G.D.J.C.t.M., 2002. Fluid-mobile trace element constraints on the role of slab melting and implications for Archaean crustal growth models. Petrology, 144, 38-56.
Kushiro, I., 1960. Si-Al relation in clinopyroxenes from igneous rocks. American Journal of Science, 258, 548-55.
Leake, B.E., Woolley, A.R., Arps, C.E.S., Birch, W.D., Gilbert, M.C., Grice, J.D., Hawthorne, F.C., Kato, A., Kisch, H.J., Krivovichev, V.G., Linthout, K., Laird, J., Mandarino, J.A., Maresch, W.V., Nickel, E.H., Rock, N.M.S., Schumacher, J.C., Smith, D.C., Stephenson, N.C.N., Ungaretti, L., Whittaker, E.J.W. and Youzhi, G., 1997. Nomenclature of amphiboles: report of the subcommittee on amphidoles of the International Mineralogical Association, Commission on new minerals and mineral names. European Journal of Mineralogy, 9, 623-651.
Le Bas, M.J., 1962. The role of aluminum in igneous clinopyroxenes with relation to their parentage. American Journal of Science, 260, 267-288.
Leterrier, J., Maury, R.C., Thonon, P., Girard, D. and Marchal, M., 1982. Clinopyroxene composition as method of identification of the magmatic affinities of paleo-volcanic series systems. Contributions to Mineralogy and Petrology, 133(1-2), 122-135.
Liu, T.C., Chen, B.R. and Chen, C.H., 2000. Melting experiment of a Wannienta basalt in the Kuanyinshan area, northern Taiwan. Journal of Asian Earth Sciences, 18, 519-531.
Middlemost, E. A. K., 1994. Naming materials in the magma/igneous rock system. Earth Science Reviews, 37, 215-224.
Molina, J. F., Scarrow, J.H., and Montero, P.G., 2009. High-Ti amphibole as a petrogenetic indicator of magma chemistry: evidence for mildly alkalic hybrid melts during evolution of Variscan basic- ultrabasic magmatism of Central Iberia. Contribution to Mineralogy and Petrology, 158, 69-98.
Monsef, I., Monsef, R., Mata, J., Zhang, Z., Pirouz, M., Rezaeian, M., Esmaeili, R. and Xiao, W., 2018. Evidence for an early-MORB to fore-arc evolution within the Zagros suture zone: Constraints from zircon U-Pb geochronology and geochemistry of the Neyriz ophiolite (South Iran). Gondwana Research, 62, 287-305.
Morimoto, N., Fabries, J., Ferguson, A.K., Ginzburg, I.V., Ross, M., Seifert, F.A., Zussman, J., Aoki, K. and Gottardi, G., 1988. Nomenclature of pyroxenes. American Mineralogist, 73, 1123–1133.
Nisbet, E.G. and Pearce, J.A. 1977. Clinopyroxene composition in mafic lavas from different tectonic settings. Contribution to Mineralogy and Petrology, 63, 149-160.
Pearce, J.A. and Norry, M.J., 1979. Petrogenetic implications of Ti, Zr, Y, and Nb variations in volcanic rocks. Contributions to Mineralogy and Petrology, 69, 33–47.
Ricou, L.E., 1976. Evolution structurale des Zagrides. La region Clef de Neyriz (Zagros Iranien). Mémoires de la Société géologique de France, Nouvelle Serie-Tom LV, 55, 140.
Sarkarinejad, K., 1994. Petrology and tectonic setting of the Neyriz ophiolite, southeastern Iran. In Proceedings of the 29th International Geological Congress, Part D. Edited by A. Ishiwatari, J. Malpas, and H. Ishizuka., 221–234.
Schmidth, M.W., 1992. Amphibole composition in tonalite as a function of pressure: an experimental calibration of the Al-in hornblende barometer. Contributions to Mineralogy and Petrology, 110, 304-310.
Schweitzer, E. L., Papike, J. J. and Bence, A. E., 1979. Statistical analysis of clinopyroxenes from deep sea basalts. American Mineralogist, 64, 501-513.
Soesoo, A., 1997. A multivariate statistical analysis of clinopyroxene composition: empirical coordinates for the crystallization PT-estimations. Geological Society of Sweden (Geologiska Föreningen), 119, 55-60.
Stocklin, J., 1974. Possible ancient continental margins in Iran. In: C.A., Burk and C.L., Drake (Editores), the geology of continental margins, Springer-Verlag, Berlin, 873-887.
Whitney, D.L. and Evans, B.W., 2010. Abbreviations for names of rock-forming minerals. American Mineralogist, 95, 185-187.
Zhihong, W. and Huafu, I., 1998. Geology, petrology and geochemistry of the mafic-ultramafic rocks in the Fujian coastal region. Southeastern China, and their genesis. Ofioliti, 23, 1-6.
Zhou, M. F., Lightfoot, P. C., Keays, R. R., Moore, M. L. and Morrison, G. G., 1997. Petrogenetic significance of chromian spinels from the Sudbury igneous complex, Ontario, Canada. Canadian Journal of Earth Sciences, 34, 1405-1419.