• Home
  • power allocation
    • List of Articles power allocation

      • Open Access Article

        1 - Joint Power Allocation Optimization of cooperative communication systems with Non-Orthogonal Multiple Access
        Hamid AmiriAra mohamadbagher masrur mohamadreza zahabi
        In this paper, a downlink network with two users as transmitter and relay, respectively, and a central station as a receiver is considered. The aim is to determine the optimal coefficient of non-orthogonal signal symbols and the optimal power allocation in the source-re More
        In this paper, a downlink network with two users as transmitter and relay, respectively, and a central station as a receiver is considered. The aim is to determine the optimal coefficient of non-orthogonal signal symbols and the optimal power allocation in the source-relay in order to maximize the average total rate in a cooperative communication system using the non-orthogonal multiple access technique. To achieve these goals, the average total rate of the cooperative communication system with non-orthogonal multiple access with decode and forward relay in the independent Rayleigh channel was calculated. Then, in the first step, the optimization problem of the non-orthogonal symbols coefficient is mathematically expressed for each power allocation and a closed form solution is proposed. In the second step, the power allocation optimization for the source-relay was introduced and solved. Finally, the joint optimization problem of the non-orthogonal symbols coefficient and power allocation is investigated and an algorithm proposed for the joint optimization problem. The proposed algorithm shows that the joint optimization of the non-orthogonal symbols coefficient and power allocation achieve a higher average rate than the separate optimization of each of these parameters. Also, simulations and numerical results are presented to confirm the theoretical equation, where the simulations show the 3 dB gain for the optimized system using the proposed algorithm compared to the non-optimized system. Manuscript profile
      • Open Access Article

        2 - Energy-Efficient User Pairing and Power Allocation for Granted Uplink-NOMA in UAV Communication Systems
        Seyed Hadi Mostafavi-Amjad Vahid Solouk Hashem Kalbkhani
        With the rapid deployment of users and increasing demands for mobile data, communication networks with high capacity are needed more than ever. Furthermore, there are several challenges, such as providing efficient coverage and reducing power consumption. To tackle thes More
        With the rapid deployment of users and increasing demands for mobile data, communication networks with high capacity are needed more than ever. Furthermore, there are several challenges, such as providing efficient coverage and reducing power consumption. To tackle these challenges, using unmanned aerial vehicles (UAVs) would be a good choice. This paper proposes a scheme for uplink non-orthogonal multiple access (NOMA) in UAV communication systems in the presence of granted and grant-free users. At first, the service area users, including granted and grant-free users, are partitioned into some clusters. We propose that the hover location for each cluster is determined considering the weighted mean of users’ locations. We aim to allocate transmission power and form NOMA pairs to maximize the energy efficiency in each cluster subject to the constraints on spectral efficiency and total transmission power. To this end, the transmission powers of each possible pair are obtained, and then Hungarian matching is used to select the best pairs. Finally, finding the flight path of the UAV is modeled by the traveling salesman problem (TSP), and the genetic algorithm method obtains its solution. The results show that the increasing height of the UAV and density of users increases the spectral and energy efficiencies and reduces the outage probability. Also, considering the quality of service (QoS) of granted users for determining the UAV's hover location enhances the transmission's performance. Manuscript profile
      • Open Access Article

        3 - Detector Design & Power Allocation of Frequency Diverse Phased Multi Input Multi Output Radar within Nonhomogeneous Environments
        Hamid Reza  Fotoohi Firouzabad Seyed Mehdi Hosseini Andargoli Hossein  Ghanei Yakhdan J. Abouei
        In recent years, Phased-Multiple-Input, Multiple-Output radars (PMRs) have attracted great interest. PMR can combine the advantages of both MIMO radar and phased array radar. Here, PMR transmits orthogonal signals from all subarrays to provide both waveform frequency di More
        In recent years, Phased-Multiple-Input, Multiple-Output radars (PMRs) have attracted great interest. PMR can combine the advantages of both MIMO radar and phased array radar. Here, PMR transmits orthogonal signals from all subarrays to provide both waveform frequency diversity and high coherent processing gain. In this paper dealt with detector design in the presence of heterogeneous clutter based on the unknown scattering coefficients for PMR. Then, detection probability and false-alarm probability are computed based on the derived optimum detector. At the end, the power allocation problem is investigated analytically. The numerical simulations show that obtained optimal detector is joint spatial-temporal filter, which, the clutters are effectively weakened in PMR. Furthermore, simulation results illustrate that proposed power allocation algorithm improve detection performance of PMR in comparison with PR and equal power PMR. Manuscript profile
      • Open Access Article

        4 - A New Power Allocation Optimization for One Target Tracking in Widely Separated MIMO Radar
        Mohammad Akhondi Darzikolaei Mohammad Reza Karami-Mollaei Maryam Najimi
        In this paper, a new power allocation scheme for one target tracking in MIMO radar with widely dispersed antennas is designed. This kind of radar applies multiple antennas which are deployed widely dispersed from each other. Therefore, a target is observed simultaneousl More
        In this paper, a new power allocation scheme for one target tracking in MIMO radar with widely dispersed antennas is designed. This kind of radar applies multiple antennas which are deployed widely dispersed from each other. Therefore, a target is observed simultaneously from different uncorrelated angles and it offers spatial diversity. In this radar, a target’s radar cross section (RCS) is different in each transmit-receive path. So, a random complex Gaussian RCS is supposed for one target. Power allocation is used to allocate the optimum power to each transmit antenna and avoid illuminating the extra power in the environment and hiding it from interception. This manuscript aims to minimize the target tracking error with constraints on total transmit power and the power of each transmit antenna. For calculation of target tracking error, the joint Cramer Rao bound for a target velocity and position is computed and this is assumed as an objective function of the problem. It should be noted that a target RCS is also considered as unknown parameter and it is estimated along with target parameters. This makes a problem more similar to real conditions. After the investigation of the problem convexity, the problem is solved by particle swarm optimization (PSO) and sequential quadratic programming (SQP) algorithms. Then, various scenarios are simulated to evaluate the proposed scheme. The simulation results validate the accuracy and the effectiveness of the power allocation structure for target tracking in MIMO radar with widely separated antennas. Manuscript profile