• Home
  • Network lifetime
    • List of Articles Network lifetime

      • Open Access Article

        1 - Increasing the lifetime of underwater acoustic sensor networks by optimal relay node placement
        zahra mihamadi mohadeseh soleimanpour daryush avasimoghaddam Siamak Talebi
        Underwater acoustic sensor networks (UASNs) have gained growing importance due to their desirable features and wide spread practical applications in many communication fields. Due to the high cost of underwater sensor nodes as well as implementation complexity, increasi More
        Underwater acoustic sensor networks (UASNs) have gained growing importance due to their desirable features and wide spread practical applications in many communication fields. Due to the high cost of underwater sensor nodes as well as implementation complexity, increasing the lifetime of UASNs is an important issue. Although relay nodes have an important role in reducing the transmission distance and energy consumption. But the efficient RNP (Relay Node Placement) to avoid the critical sensor nodes' elimination is the main problem, i.e., to preserve the connected network. For this aim this paper presents an innovative solution called an Efficient Relay node Setting (ERS) algorithm, which involves formulating the Relay Node Placement (RNP) as a non-convex optimization problem. Actually, due to the Difference Convex (DC) constraints the proposed RNP problem is a non-convex problem and finding an optimal solution is complicated. However, a novel transformation can be applied to DC constraints which converts the problem into its convex programming equivalent. Application of the convex programming offers the advantage of readily computing a global optimal solution. Simulation results confirm the superiority of the proposed scheme over the competing RA method in terms of network lifetime and efficiency. Manuscript profile
      • Open Access Article

        2 - Lifetime Improvement Using Cluster Head Selection and Base Station Localization in Wireless Sensor Networks
        maryam najimi Sajjad  Nankhoshki
        The limited energy supply of wireless sensor networks poses a great challenge for the deployment of wireless sensor nodes. In this paper, a sensor network of nodes with wireless transceiver capabilities and limited energy is considered. Clustering is one of the most eff More
        The limited energy supply of wireless sensor networks poses a great challenge for the deployment of wireless sensor nodes. In this paper, a sensor network of nodes with wireless transceiver capabilities and limited energy is considered. Clustering is one of the most efficient techniques to save more energy in these networks. Therefore, the proper selection of the cluster heads plays important role to save the energy of sensor nodes for data transmission in the network. In this paper, we propose an energy efficient data transmission by determining the proper cluster heads in wireless sensor networks. We also obtain the optimal location of the base station according to the cluster heads to prolong the network lifetime. An efficient method is considered based on particle swarm algorithm (PSO) which is a nature inspired swarm intelligence based algorithm, modelled after observing the choreography of a flock of birds, to solve a sensor network optimization problem. In the proposed energy- efficient algorithm, cluster heads distance from the base station and their residual energy of the sensors nodes are important parameters for cluster head selection and base station localization. The simulation results show that our proposed algorithm improves the network lifetime and also more alive sensors are remained in the wireless network compared to the baseline algorithms in different situations. Manuscript profile
      • Open Access Article

        3 - A New Game Theory-Based Algorithm for Target Coverage in Directional Sensor Networks
        Elham Golrasan marzieh varposhti
        One of the challenging problems in directional sensor networks is maximizing target coverage while minimizing the amount of energy consumption. Considering the high redundancy in dense directional sensor networks, it is possible to preserve energy and enhance coverage q More
        One of the challenging problems in directional sensor networks is maximizing target coverage while minimizing the amount of energy consumption. Considering the high redundancy in dense directional sensor networks, it is possible to preserve energy and enhance coverage quality by turning off redundant sensors and adjusting the direction of the active sensor nodes. In this paper, we address the problem of maximizing network lifetime with adjustable ranges (MNLAR) and propose a new game theory-based algorithm in which sensor nodes try to adjust their working direction and sensing range in a distributed manner to achieve the desired coverage. For this purpose, we formulate this problem as a multiplayer repeated game in which each sensor as a player tries to maximize its utility function which is designed to capture the tradeoff between target coverage and energy consumption. To achieve an efficient action profile, we present a distributed payoff-based learning algorithm. The performance of the proposed algorithm is evaluated via simulations and compared to some existing methods. The simulation results demonstrate the performance of the proposed algorithm and its superiority over previous approaches in terms of network lifetime. Manuscript profile
      • Open Access Article

        4 - A RPL-based Routing Algorithm for Multimedia Traffic for the Internet of Things
        Mohammad Khansari Farzaneh Mortazavi
        According to enormous growths in communication networks, multimedia data will play a significant role on the Internet of Things in the near future. High volume of multimedia data leads to challenges such as reducing network lifetime and congestion. In this paper, a new More
        According to enormous growths in communication networks, multimedia data will play a significant role on the Internet of Things in the near future. High volume of multimedia data leads to challenges such as reducing network lifetime and congestion. In this paper, a new objective function for the RPL routing protocol is proposed which addresses the characteristics of multimedia data in the routing process. In the objective function, node’s remaining energy and the remaining buffer capacity of nodes measures are combined using a weighted pair. In order to evaluate this method, input data is generated based on a video trace. Packet delivery ratio, network lifetime, nodes availability over the lifetime of the network, node energy distribution, and end-to-end delay are used to evaluate the proposed method. The evaluation results show that the proposed method increases the package delivery ratio compared to the standard RPL. This method also improves the lifetime of the nodes by distributing energy between the nodes in comparison with standard RPL and extends the node's availability over the lifetime of the network. Finally, it reduces the network congestion which led to a lower end-to-end delay. Manuscript profile