• List of Articles Abadan Plain

      • Open Access Article

        1 - Sudden drowning of the Late Cretaceous carbonate platform in central Zagros basin: a case study from the shaley Laffan Member in one of the Oil Fields of Abadan Plain, SW Iran
        maryam kianifard علی حسین  جلیلیان nasser arzani
        Rapid sea-level rise and drowning of carbonate platforms is one of the important geological events in the Late Cretaceous and after the Turonian global unconformity. This transgression in central and western Zagros Basin is represented as shaley sediments of the Laffan More
        Rapid sea-level rise and drowning of carbonate platforms is one of the important geological events in the Late Cretaceous and after the Turonian global unconformity. This transgression in central and western Zagros Basin is represented as shaley sediments of the Laffan Member, which were deposited over the Sarvak Formation. The stratigraphic position and the occurrence of the Charophytes-Ostracods biozone indicate the late Cretaceous, Coniacian age for the Laffan Member, which is stratigraphically equivalent to the Surgah Formation in Lurestan area in the west of Iran. The Laffan Member is mainly shaley in lithology with intercalations of thin-bedded argillaceous limestones and is the caprock over the reservoir of the Sarvak Formation in some oil fields in SW Zagros. Microfacies, sedimentary environments, biostratigraphy and sequence stratigraphy of the Laffan Member in two wells of Azadegan Oil Field located in Abadan Plain were investigated. Petrographic data revealed the presence of a shaley facies and two carbonate microfacies including charophitic mudstone-wackestone to bioclastic planktonic foraminiferal wackestone. These microfacies were deposited in transitional-brackish to deep marine environments. Marine transgression over the eroded palaeotopography of the Cenomanian-Toronian carbonates resulted in estuaries as channels and transitional environments. In these estuaries, mixture of the fresh and marine waters resulted in deposition of the lower parts of the Laffan Member and graded upward into the marine deposits of the upper parts of this Member.The sudden change of shallow-transitional facies to deep marine sediments in the Laffan Member indicates drowning of the carbonate platform of central Zagros Basin in Coniacian. The evidence like erosional base, deepening-upward sequences, frequency of mudstone facies (shale) and continuity with marine carbonates confirm this conclusion. Investigation of vertical changes of the microfacies with gama-ray well log data indicate the Laffan Member is part of a sequence as lowstand deposits (LST), transgressive deposits (TST) which grade upwards into maximum flooding surface (MFS) and high-stand deposits (HST) which comprise a third-order sequence. This sequence begins with an erosional unconformity and follows up with the formation of the estuary and deep sea sediments. The latter package is covered with the carbonate sediments of the lower part of the Ilam Formation (Santonian) which represents carbonate platform deposits of high-stand system track (HST). Manuscript profile
      • Open Access Article

        2 - Geochemical evaluation of the Sarvak and Fahliyan reservoirs crude oils by biomarker data in one of the Abadan Plain oilfields
        ELham Asadi. Mehmandosti Seyed Ali Moallemi Mahnaz amirhoseyni Azizolah Habibi
        In this study, 8 crude oil samples of the Sarvak (5 samples) and Fahliyan (3 samples) reservoirs from one of the main oilfields of the Abadan Plain was assessed geochemically by Liquid Chromatography, Gas Chromatography (GC) and Gas Chromatography Mass Spectrometry (GC- More
        In this study, 8 crude oil samples of the Sarvak (5 samples) and Fahliyan (3 samples) reservoirs from one of the main oilfields of the Abadan Plain was assessed geochemically by Liquid Chromatography, Gas Chromatography (GC) and Gas Chromatography Mass Spectrometry (GC-MS) techniques. Types of crude oils of the Sarvak reservoir are Paraffinic Naphtenic and Aromatic Intermediate and are Paraffinic type for the Fahliyan reservoir crude oils. Biomarker ratios of saturate fractions such as variation of Pr/nC17 and Ph/nC18 ratios and Pr/Ph versus C27/C29 (20R) Sterane diagram indicate formation of source rock in reducing marine environment for both oil reservoirs. Furthermore, high amount of C29 Sterane in compare to C27 and C28 Steranes show that organic matter of source rock was formed in marine environment with terrestrial kerogen input. High amount C29 Hopane versus C30 Hopane, variation C27 (Dia/Dia+Reg) Steranes versus Pr/(Pr+Ph), low amount of Diasteranes versus Steranes and variation Sterane/Hopane versus C27/C29 Steranes show carbonate- shale lithology for source rock of studied oils. Depending on high amount of resin, scattering of normal alkanes, high values of Pr/nC17 and Ph/nC18 and higher UCM in compare to other samples, K11 and K15 samples of the Fahliyan reservoir and B5 sample of the Sarvak reservoir demonstrate slight to moderate biodegradation while B19 sample show very slight biodegradation. According to variation of Pr/nC17 vs. Ph/nC18, C29 Sterane 20S/(20S+20R) vs. C32 Hopane 22S/(22S+22R), C29 Sterane 20S/(20S+20R) vs. C29 Sterane αββ/(αββ+ααα) samples from both reservoirs denote early oil window formation. Samples from the Fahliyan reservoir have high thermal maturity in compare to the Sarvak reservoir samples. Manuscript profile
      • Open Access Article

        3 - Geochemical evaluation of the Sarvak and Fahliyan reservoirs crude oils by biomarker data in one of the Abadan Plain oilfields
        Seyed Ali Moallemi Mahnaz Amir hosyeni Azizolah Habibi
        In this study, 8 crude oil samples of the Sarvak (5 samples) and Fahliyan (3 samples) reservoirs from one of the main oilfields of the Abadan Plain was assessed geochemically by Liquid Chromatography, Gas Chromatography (GC) and Gas Chromatography Mass Spectrometry (GC- More
        In this study, 8 crude oil samples of the Sarvak (5 samples) and Fahliyan (3 samples) reservoirs from one of the main oilfields of the Abadan Plain was assessed geochemically by Liquid Chromatography, Gas Chromatography (GC) and Gas Chromatography Mass Spectrometry (GC-MS) techniques. Types of crude oils of the Sarvak reservoir are Paraffinic Naphtenic and Aromatic Intermediate and are Paraffinic type for the Fahliyan reservoir crude oils. Biomarker ratios of saturate fractions such as variation of Pr/nC17 and Ph/nC18 ratios and Pr/Ph versus C27/C29 (20R) Sterane diagram indicate formation of source rock in reducing marine environment for both oil reservoirs. Furthermore, high amount of C29 Sterane in compare to C27 and C28 Steranes show that organic matter of source rock was formed in marine environment with terrestrial kerogen input. High amount C29 Hopane versus C30 Hopane, variation C27 (Dia/Dia+Reg) Steranes versus Pr/(Pr+Ph), low amount of Diasteranes versus Steranes and variation Sterane/Hopane versus C27/C29 Steranes show carbonate- shale lithology for source rock of studied oils. Depending on high amount of resin, scattering of normal alkanes, high values of Pr/nC17 and Ph/nC18 and higher UCM in compare to other samples, K11 and K15 samples of the Fahliyan reservoir and B5 sample of the Sarvak reservoir demonstrate slight to moderate biodegradation while B19 sample show very slight biodegradation. According to variation of Pr/nC17 vs. Ph/nC18, C29 Sterane 20S/(20S+20R) vs. C32 Hopane 22S/(22S+22R), C29 Sterane 20S/(20S+20R) vs. C29 Sterane αββ/(αββ+ααα) samples from both reservoirs denote early oil window formation. Samples from the Fahliyan reservoir have high thermal maturity in compare to the Sarvak reservoir samples. Manuscript profile
      • Open Access Article

        4 - Interpretation of sedimentary environment and factors affecting reservoir quality in upper Sarvak Formation in one the oil fields of Abadan plain
        Mohammad Hossein Saberi Bahman Zarenezhad الهام  اسدی Nasim Rahmani
        The Sarvak Formation of the Albian-Turonian Formation is one of the most important hydrocarbon reservoirs in south and southwest of Iran. In this study, in order to assess the reservoir quality, from a petrographic study and porosity and permeability data, an important More
        The Sarvak Formation of the Albian-Turonian Formation is one of the most important hydrocarbon reservoirs in south and southwest of Iran. In this study, in order to assess the reservoir quality, from a petrographic study and porosity and permeability data, an important well in one of the oil fields of Abadan plain has been used. Based on microscopic studies, 13 microfacies have been identified in the form of Four facies tidal flat, lagoon, shoal and open marine for Sarvak Formation deposits in the studied oil field, indicating that the upper part of the Sarvak Formation is deposited in a homoclinal carbonate ramp. Among the identified diagenetic processes, dissolution, cementation, dolomitization, fracturing, compaction, neomorphism, micritization, bioturbation, pyritization, hematitization, phosphatization and silicification are mentioned. Diagenetic processes of Sarvak Formation occurred in three marine, meteoric and burial environments. Among the dissolution and fracturing diagenetic processes, the most important role has been in increasing the reservoir quality, and cementation and compaction have been the most important factors in reducing reservoir quality. Sequence stratigraphy studies identified third order sedimentary sequences of the age of Turonian, Late Cenomanian, and Middle Cenomanian, and studied the facies and diagenetic processes within its framework. Correlation of porosity and permeability data of the core showed that the reservoir quality in this formation was influenced by facies and diagenetic processes. So that the microfacies containing the rudist have the highest reservoir quality. Due to the diagenetic processes, sedimentary and porosity and permeability data, the facies shoal and open marine to the land have the best reservoir quality. Manuscript profile
      • Open Access Article

        5 - Interpretation of sedimentary environment and factors affecting reservoir quality in upper Sarvak Formation in one the oil fields of Abadan plain
        Arad Kiani Mohammad Hossein Saberi Bahman Zare nejad Elham Asadi Nasim Rahmani
        The Sarvak Formation of the Albian-Turonian Formation is one of the most important hydrocarbon reservoirs in south and southwest of Iran. In this study, in order to assess the reservoir quality, from a petrographic study and porosity and permeability data, an importan More
        The Sarvak Formation of the Albian-Turonian Formation is one of the most important hydrocarbon reservoirs in south and southwest of Iran. In this study, in order to assess the reservoir quality, from a petrographic study and porosity and permeability data, an important well in one of the oil fields of Abadan plain has been used. Based on microscopic studies, 13 microfacies have been identified in the form of Four facies tidal flat, lagoon, shoal and open marine for Sarvak Formation deposits in the studied oil field, indicating that the upper part of the Sarvak Formation is deposited in a homoclinal carbonate ramp. Among the identified diagenetic processes, dissolution, cementation, dolomitization, fracturing, compaction, neomorphism, micritization, bioturbation, pyritization, hematitization, phosphatization and silicification are mentioned. Diagenetic processes of Sarvak Formation occurred in three marine, meteoric and burial environments. Among the dissolution and fracturing diagenetic processes, the most important role has been in increasing the reservoir quality, and cementation and compaction have been the most important factors in reducing reservoir quality. Sequence stratigraphy studies identified third order sedimentary sequences of the age of Turonian, Late Cenomanian, and Middle Cenomanian, and studied the facies and diagenetic processes within its framework. Correlation of porosity and permeability data of the core showed that the reservoir quality in this formation was influenced by facies and diagenetic processes. So that the microfacies containing the rudist have the highest reservoir quality. Due to the diagenetic processes, sedimentary and porosity and permeability data, the facies shoal and open marine to the land have the best reservoir quality. Manuscript profile
      • Open Access Article

        6 - The application of Normalized Cumulative Gamma Deviation Log (NCGDL) in sequence stratigraphic analysis and correlation, a case study from the Sarvak Formation, Abadan Plain, SW, Iran
        A. Asaadi A. Imandoust J.  Honarmand ایرج عبدالهی فرد O.R. Salmian
        Identification of key sequence stratigraphic surfaces is an essential task in geological evaluation of hydrocarbon reservoirs. The Sarvak Formation with Late Albian-Early Turonian age constitute the important reservoir unit in the Abadan Plain region, SW Iran. This stud More
        Identification of key sequence stratigraphic surfaces is an essential task in geological evaluation of hydrocarbon reservoirs. The Sarvak Formation with Late Albian-Early Turonian age constitute the important reservoir unit in the Abadan Plain region, SW Iran. This study investigates the application of Normalized Cumulative Gamma Deviation Log (NCGDC) to discriminate and correlate key sequence stratigraphic surfaces in six wells in a giant oil field in the Abadan Plain. To achieve this goal, identified key stratigraphic surfaces from core and thin sections were compared with interpretation of NCGDC method. From sequence stratigraphic point of view and based on the results from geological studies, the Sarvak Formation has been sub-divided into four third-order sequences which are described and interpreted. Two main disconformity surfaces, considered as sequence boundaries, are characterized by features of karstification, dissolution-collapse brecciation, and development of paleosol horizons. Generally, positive surfaces correspond to maximum flooding surfaces and negative surfaces occur at sequence boundary. Comparison of the results shows that, the identified sequence by NCGDC method can be effectively used for discrimination and correlation of sequences in different carbonate and siliciclastic reservoirs in the field scale. Manuscript profile