• Home
  • مبدل چندسطحی
    • List of Articles مبدل چندسطحی

      • Open Access Article

        1 - Reduction of Electrical Losses of Flying-Capacitor Modular Multilevel Converter (FC-MMC) in Electric Drive Application
        Ahmad Bagheri H. Iman-Eini
        The flying-capacitor modular multilevel converter (FC-MMC) has been introduced as a hardware development of the conventional MMC with the aim of reducing the cell capacitor ripple voltage in the application of electrical drive at low speeds. The capacitor ripple voltage More
        The flying-capacitor modular multilevel converter (FC-MMC) has been introduced as a hardware development of the conventional MMC with the aim of reducing the cell capacitor ripple voltage in the application of electrical drive at low speeds. The capacitor ripple voltage of the cells in this converter is reduced only by injecting high frequency circulating current between the arms. In the conventional control method of this converter, the circulating current component is injected with the aim of complete elimination of the voltage ripple at low frequencies, which leads to an unnecessary increase of the current amplitude in the converter arms. In this paper, the converter control system is modified by finding the relationship between the cell capacitor voltage ripple and the high frequency circulating current amplitude. Then, by injecting the appropriate amplitude of the circulating current, the voltage ripple is controlled in an acceptable range. It is shown that by partial compensation (instead of full elimination of the voltage ripple), in addition to reducing the amplitude of the arm currents, the losses of the electrical system are significantly reduced. The results of simulations and experiments confirm the successful performance of the proposed method. Manuscript profile
      • Open Access Article

        2 - Comparison of FCS-MPC Predictive Control and Predictive Control Based on Lyapunov Theory in Seven-Level PUC Rectifier
        Alimohammad  Mohammadpour Behbid Mohammad Reza  Alizadeh Pahlavani Arash Dehestani Kolagar Alireza Davari
        In this paper, two predictive control methods for dual output multilevel rectifier are compared. The investigated structure is a seven-level PUC rectifier, which was selected based on high reliability and low cost. Increasing the number of input voltage levels helps to More
        In this paper, two predictive control methods for dual output multilevel rectifier are compared. The investigated structure is a seven-level PUC rectifier, which was selected based on high reliability and low cost. Increasing the number of input voltage levels helps to reduce the amount of harmonics and consequently reduce the size of power filters. On the other hand, current conduction in this converter is performed continuously and the problems of current discontinuity such as complexity in analysis and the requirement to use large induction filters on the DC side are solved. First, the design is accomplished based on the FCS-MPC method and two different output voltages with ratios of 1 and 3 are obtained. Also, the control of output DC voltages and unity input power factor is well provided. Then, to achieve better stability, the MPC method based on Lyapunov theory has been utilized. In this method, the target variables are defined in the Lyapunov function and the cost function is derived from the same Lyapunov function. The advantages of this approach compared to the conventional MPC method are no need for gain adjustment, easier implementation and fewer sensors (the load current is estimated using the PUC7 rectifier mathematical model). The simulation of both FCS-MPC and predictive control based on Lyapunov method is carried out using Matlab/Simulink and the results of both methods are presented and compared with each other. Finally, it can be seen that in the Lyapunov-based method, the tracking of the reference current is smoother and with less fluctuations, and the seven-level rectifier voltage also has a more regular and sinusoidal waveform. Manuscript profile