The Study of mineral chemistry, tectonomagmatic setting and petrogenesis of plutonic bodies in Sursat Complex, NW Takab, Iran
Subject Areas :Soraya Dadfar 1 , Farhad Aliani 2 , Ali Akbar Baharifar 3 , Mohamad Hossian Zarinkoub 4
1 -
2 -
3 -
4 -
Keywords: I-Type granitoide Mineral chemistry Crustal contamination Magma mixing NW Takab,
Abstract :
The plutonic bodies occurring in Sursat complex are some parts of plutonic rocks of Sanandaj- Sirjan Zone. Based on the field observations and microscopic studies, rocks of the study area are consist of hornblende gabbro, quartz diorite, monzodiorite, granodiorite and tonalite. The EPMA analyses of minerals such as amphiboles (in granodiorite and monzodiorite), plagioclases and alkali feldspars indicate that amphiboles are magnesiohornblende, plagioclases are albite and oligoclase and alkali feldspares are orthoclase. Geochemical studies indicate that monzodiorite unit (Turke Dare and Khangholi bodies) are metaluminous I-type and calc-alkaline in nature. They are plotted in volcanic arc granite (VAG) region with 87Sr/86Sr and εNd values equal to 0.70448 and -0.12. All evidence represent that the monzodiorite were generated from a magma which was derived from mantle affected by assimilation and contamination processes. Granodiorite unit (Pichaghci, Hamzeh Ghasem and Northeast Khangholi bodies) represents I-type, metaluminous to peraluminous and calc-alkaline characteristics and is plotted in VGA field of magmatic arc. The 87Sr/86Sr and εNd values are equal to 0.70529 and -2.82 respectively. So these granodiorites were generated through mixing processes of a mantle magma with crustal sources. Tonalite–trondhjemites group are I-type, tholeiitic, peraluminous according to the low value of Mg# (2.9-11.6), Cr (20-46 ppm) and Ni (1-2.4 ppm) contents. They are also low in LA/Yb, Sr/Y, and Nb/Ta. The slight negative anomaly in fractionated patterns of the rare earth elements (REE) and very low depletion in Eu, indicate that these rocks were resulted from amphibolitic crustal source that were previousely generated from thickened mafic crust or from basaltic plate in low pressures at shallow depth in the presence of abundant plagioclase.
خلقی خسرقی، م. ح.، 1994. نقشه زمینشناسی 100000/1 شاهیندژ، سازمان زمینشناسی و اکتشافات معدنی کشور.
- خلقی، م. ح و وثوقی عابدینی، م.، 1382. منشا، پتروژنز و سنسنجی رادیومتری باتولیت پیچاقچی (شمال باختر ایران)، مجله علوم زمین، 11، 89- 78.
- مجرد، م، موذن، م و موید. م.، 1386. تعيين ژنز و نرخ ذوب بخشی گابروهای آلكالن منطقه شرق شاهيندژ. پانزدهمین همایش انجمن بلورشناسی و کانیشناسی ایران، دانشگاه فردوسی مشهد.
- Agemar, T., Worner, G. and Heumann, A., 1999. Stable isotopes and amphibole chemistry on hydrothermally altered granitoids in the North Chilean Precordillera: a limited role for meteoric water? Contribution to Mineralogy and Petrology, 136, 331-344.
- Altherr, R. and Siebel, W., 2002. I-type plutonism in a continental back-arc setting: Miocene granitoids and monzonites from the central Aegean Sea, Greece. Contributions to Mineralogy and Petrology, 143, 397–415.
- Anderson, J.L. and Smith, D.R., 1995. The effects of temperature and fO2 on the Al-in-hornblende barometer. American Mineralogist, 80, 549-559.
-Atherton, M. P. and Petford, N., 1993. Generation of sodiumrich magmas from newly underplated basaltic crust. Nature, 362, 6416, 144–146.
- Bottinga, Y., Kudo A. and Weil, D., 1966. Some observation of oscillatory zoning and crystallization of magmatic plagioclase. American Mineralogist, 51, 292-806.
- Boyenton, W. V., 1984. Geochemistry of the rare earth elements: meteorite studies. In: Henderson P. (ed.), Rare earth element geochemistry. Elsevier, 63- 114.
- Chappell, B. J. and White, A. J. R., 1974. Two Contrasting Granite Types. Journal of Pacific Geolog, 8, 173-174.
-Coltorti, M., Bonadiman, C., Faccini, B., Grégoire, M., O'Reilly, S.Y. and Powell, W., 2007. Amphiboles from suprasubduction and intraplate lithospheric mantle. Lithos, 99, 68-84.
- Condie, K. C., 2005. TTGs and adakites: are they both slab melts?. Lithos, 80(1–4), 33–44.
- Deer W.A., Howie R.A. and Zussman J., 1991. An Introduction to the Rock – Forming Minerals. Longman, London, 528.
- Drummond, M. S. and Defant, M. J., 1990. A model for Trondhjemite-Tonalite-Dacite genesis and crustal growth via slab melting: Archean to modern comparisons. Journal of Geophysical Research: Solid Earth, 95(B13), 21503–21521.
- de Almeida, J. d .A. C., Agnola, R. D., de Oliveira, M. A., Macambira, M. J. B., Pimentel, M. M., Rämö, O. T., Guimarães, F. V. and da Silva Leite, A. A., 2011. Zircon geochronology, geochemistry and origin of the TTG suites of the Rio Maria granite-greenstone terrane: Implications for the growth of the Archean crust of the Carajás province, Brazil. Precambrian Research, 187, 201,221.
- Foley, S. F. and Wheller, G. E., 1990. Parallels in the origin of geochemical signatures of island arc volcanic and continental potassic igneous rocks: the role of residual titanites. Chemical Geology, 85, 1-18.
- Fourcade, S., 1998. Les isotopes: effect isotopiques, base de radio- geochimie. In: Hagemann G. and Treuil M. (eds) Introduction a la geochimies et ses applications. Paris: CEA, 195- 265.
- Foley, S., Tiepolo, M. and Vannucci, R., 2002. Growth of early continental crust controlled by melting of amphibolite in subduction zones. Nature, 417, 837–840.
- Green, T. H., 1995. Significance of Nb/Ta as an indicator of geochemical processes in the crust-mantle system. Chemical Geology, 120,3–4, 347–359.
- Hassanzadeh, J. and Wernicke, B., 2016. The Neotethyan Sanandaj-Sirjan zone of Iran as an archetype for passive margin-arc transitions. Tectonics, 35,3, 586-621.
- Hasse, C. S., Chadam, J., Feinn D. and Otoleva, P., 1980. Oscillatory zoning in plagioclase feldspar. Science, 299, 272 - 274.
- Huaimin, X., Shuwen, D. and Ping, J., 2006. Mineral chemistry, geochemistry and U-Pb SHRIMP zircon data of the Yangxin monzonitic intrusive in the foreland of the Dabie orogen Science in China: Series D. Earth Sciences, 49, 684-695.
- Henderson, P., 1984. Rare Eaerth Element Geochemistry. Elsevier, Oxford, New York.
- Irvine, T. N. and Baragar, W. R. A., 1971. A guide to the chemical classification of the common volcanic rocks. Canadian Journal of Earth Science, 8, 523-548.
- Jamshidi Badr, M., Collins, A.S. and Masoudi, F., 2013. Th U-Pb age, geochemistry and tectonic signifiance of granitoids in the Soursat Complex, Northwest Iran. Turkish Journal of earth Sciences, 22, 1-31.
- Jiang, C. Y. and An, S. Y., 1984. On chemical characteristics of calcic amphiboles from igneous rocks and their petrogenesis significance. Journal of Mineralogy and Petrololgy, 3, 1-9.
- Joron, J. L. and Treuil, M., 1977. Utilisation des proprietes des elements fortement hygromagmatophiles pour l'etude de la composition chimique et de heterogeneite ḋu manteaux. Bulletin de La Societe' Geologique France, 20, 1197-1205.
- Kamber, B. S., Ewart, A., Collerson, K. D., Bruce, M. C. and McDonald, G. D., 2002. Fluid-mobile trace element constraints on the role of slab melting and implications for Archean crustal growth models. Contributions to Mineralogy and Petrology, 144,1, 38–56.
- Leake, B. E., Woolly, A .R., Arps, C. E. S., Birch, W. D., Gilbert, M. C., Grice, J. D., Hawthorne, F. C., Kato, A., Kisch, H.J., Krivovichev, V.G., Linthout, K., Laird, J., Mandarino, J., Maresch, W.V., Nickel, E.h., Rock, N.M.S., Schmucher, J.C., Smith, D. C., Stephenson, N. C. N, Unungaretti, L., Whittaker, E. J. W. and Youzhi, G., 1997. Nomenclature of Amphiboles. Report of the Subcommittee on Amphiboles of the International Mineralogical Association Commission on New Minerals Names. Europian Journal of Mineralogy, 9, 623-651.
- Martin, H., 1986. Effect of steeper Archean geothermal gradient on geochemistry of subduction-zone magmas. Geology, 14,9, 753–756.
- Martin, H., 1999, Adakitic magmas: modern analogues of Archaean granitoids. Lithos, 46,3, 411–429.
- Middlemost, E.A.K., 1994, Naming meterials in the magma/igneous rock system. Earth Sciences Reviews, 37, 215-224.
- Míková, J. and Denková, P., 2007. Modified chromatographic separation scheme for Sr and Nd isotope analysis in geological silicate samples. Journal of Geosciences, 52, 221–226.
- More, D. E. and Liou, J. G., 1979. Chessboard- twinned albite from Franciscan metaconglomerate of the Diablo Range, California American Mineralogist, 64, 77- 101.
- Nelson S.T. and Montana A., 1992. Sieve- texture plagioclase in volcanic rocks production by rapid decompression. American Mineralogist, 77, 1242-1279.
- Nutman, A. P., Mohajjel, M., Bennett, V. C. and Fergusson, C. L., 2013, Gondwanan Eoarchean–Neoproterozoic ancient crustal material in Iran and Turkey: zircon U–Pb–Hf isotopic evidence. Canadian Journal of Earth Sciences, 513, 272-285.
- Petford, N. and Atherton, M., 1996. Na-rich partial melts from newly underplated basaltic crust: the Cordillera Blanca Batholith, Peru. Journal of Petrology, 37,6, 1491–1521.
- Rapp, R. P., Shimizu, N., Norman, M. D. and Applegate, G. S., 1999. Reaction between slab-derived melts and peridotite in the mantle wedge: experimental constraints at 3.8 GPa. Chemical Geology, 160,4, 335–356.
- Shahabpour, J., 1994. Post-mineralization breccia dike from the Sar Cheshmeh porphyry copper porphyry system, Kerman, Iran. Exploration and Mining Geology, 3, 39–343.
- Shand, S. J., 1943. Eruptive rocks, T. Murby, London, 488.
- Smithies, R. H., Champion, D. C. and Cassidy, K. F., 2003. Formation of Earth’s early Archaean continental crust. Precambrian Research, 127,1–3, 89–101.
- Smithies, R. H., Champion, D. C. and Van Kranendonk, M. J., 2009. Formation of Paleoarchean continental crust through infracrustal melting of enriched basalt. Earth and Planetary Science Letters, 281,3–4, 298–306.
- Sylvester, P. J., 1998. Post-collisional strongly peraluminous granites. Lithos, 45,1-4, 29-44.
- Tepper, J. H., Nelson, B. K., Bergantz, G. W. and Irving, A. J., 1993. Petrology of the Chilliwack batholith, north Cascades, Washington:generation of calcalkaline granitoids by melting of mafic lower crust with variable water fugacity. Contributions to Mineralogy and Petrology, 113, 333-351.
- Thompson A.B., 1982. Magmatism of the Bristish Tertiary Volcanic Province. Scottlandian Journal of Geology, 18, 50-107.
- Verma, S. K., Pandarinath, K. and Verma, S. P., 2012. Statistical evaluation of tectonomagmatic discrimination diagrams for granitic rocks and proposal of new discriminant-function-based multi-dimensional diagrams for acid rocks. International Geology Review, 54,3, 325-347.
- Wang, Q., Xu, J. F., Jian, P., Bao, Z. W., Zhao, Z. H., Li, C. F., Xiong, X. L. and Ma, J. L., 2006. Petrogenesis of adakitic porphyries in an extensional tectonic setting, dexing, South China: implications for the genesis of porphyry copper mineralization. Journal of Petrology, 47,1, 119–144.
- White, A.J. R. and Chappell, B. W., 1983. Granitoid type and their distribution in the Lachlan Fold Belt. Southeastern Australia. Geological Society of American. Memorial, 159, 21-34.
-Withney, D. and Evance, W.D., 2010. Abbreviations for names of rock-forming minerals. American Mineralogist, 95, 185–187.
- Xie, Y.W. and Zhang, Y.Q., 1990. Peculiarities and genetic significance of hornblende from granite in the Hengduansan region. Acta Metallurgica Sinica, 10, 35-45.