Tectonomagmatic setting of the Eocene volcanic rocks in Ahovan area (Semnan)
Subject Areas :Maryam Alipour 1 , Morteza Khalatbari-Jafari 2 , Mohsen Pourkermani 3 , Sedigheh Etesami 4 , Ali Sorbi 5
1 -
2 -
3 -
4 -
5 -
Keywords: Andesite Ahovan Dacite Rhyolite Calc-alkaline.,
Abstract :
Petrology and tectonomagmatic setting of the Eocene volcanic rocks exposed in the Ahovan area, east of Semnan are presented and discussed. The studied rocks include basic-intermediate and acidic volcanic lavas and dikes, accompanied by intercalations of nummulite-bearing limestone, shallow water deposits, hyaloclastite and hyaloclastic breccia. The basic-intermediate lavas are exposed at the base and the rhyolitic and andesitic lavas are exposed at the top of the volcanic series, all of which may be attributed to a bimodal volcanism. It seems that Eocene volcanic activity occurred in shallow water to subaerial environments. Based on petrographical investigations, the volcanic lavas show basaltic, basaltic andesitic, andesitic, dacitic, rhyolitic and acidic tuffs compositions. The lavas have phyric to aphyric textures. The phyric lavas include plagioclase, augite and hornblend phenocrysts. They show microlitic, microcrystalline and intergranular groundmass in dikes. Disrupted zoning and sieve texture in plagioclase phenocrysts and heterogeneous groundmass might be interpreted by magma mixing. Study of the geochemical analyses, indicates high-k calc-alkaline to shoshonitic magmatic trends in the Ahovan area. Trace and REE spider diagrams, normalized with standard values, display enrichment of LILE and clear depletion of Nb and Ti. In tectonomagmatic diagrams, these samples plot in the arc field which tends toward an initial extensional back arc envirenment. It appears that partial melting of adjusted mantle wedge above a subducted slab provided the parental magma which was enriched by fluids-melt released from partial melting of the subducted slab.
بازرگانی گیلانی، ک. و فرامرزی، م.، ۱۳۸۴. زمین¬شناسی و ژنز کانسارهای سرب و روی شمال سمنان. بیست و چهارمین گردهمایی علوم زمین، سازمان زمین¬شناسی و اکتشافات معدنی کشور.
حسینی، ح.، 1384. نقشه زمین¬شناسی جام با مقیاس 1:25،000. سازمان زمین¬شناسی کشور، بلوک 37.
حاجی بهرامی، م.، تقی¬پور، ن. و قربانی، ق.، 1394. منشاء کانسارهای همیرد، شمال شرق سمنان: با استفاده از مطالعه میانبارهای سیال و ایزوتوپ¬های پایدار S، C، O. فصلنامه علوم زمین، 97، 70-61.
شاه حسینی، ا. و قاسمی، ح.، ۱۳۸۶. پترولوژی و پتروژنز توده¬های نفوذی شمال- شمال شرق سمنان. بیست و ششمین گردهمایی علوم زمین، سازمان زمین-شناسی و اکتشافات معدنی کشور.
شهری، م.، 1390. بررسی اسکارن¬زایی، متاسوماتیسم و کانه¬زایی مرتبط با آن در منطقه زرتول، شمال شرق سمنان. رساله کارشناسی ارشد، دانشگاه صنعتی شاهرود، 149.
صمدیان، م. ر.، نبوی، م. ح.، علوی نائینی، م.، شهرابی، م.، واعظی¬پور، م. ج.، حامدی، ع. ر. و آقانباتی، س. ع.، 1373. نقشه زمین¬شناسی چهارگوش سمنان با مقیاس 1:250،000، سازمان زمین¬شناسی کشور.
علوی نائينی، م.، 1376. نقشه زمين¬شناسی جام با مقياس 1:100،000. سازمان زمين¬شناسی کشور، سری 6761.
غیاثوند، ع.، قادری، م. و رشیدنژاد عمران، م.، 1384. مطالعه کانی¬شناسی ژئوشیمی و خاستگاه کانسارهای آهن شمال سمنان. نهمین همایش انجمن زمین¬شناسی ایران.
قاسمی، ح.، الهیاری، س.، طاهری، ع. و صادقیان، م.، 1392. موقعیت چینه شناسی و تحلیل بافتی سنگ¬های آتشفشانی نوار آتشفشانی-رسوبی عباس آباد، شمال شرق شاهرود. پژوهش¬های چینه نگاری و رسوب شناسی، 50 (1)، 25-42.
قریشوندی، ح.ر.، مسعودی، م.، پرهیزکار، ط. و پورخورشیدی، ع.، ۱۳۸۹. قابلیت کاربرد سنگ¬های آتشفشانی شرق سمنان (منطقه جام) به عنوان پوزولان در ترکیب سیمان¬های آمیخته. نخستین همایش انجمن زمین شناسی اقتصادی ایران، دانشگاه فردوسی مشهد.
یزدی، ع. و شاه¬حسینی، ا.، 1394. پترولوژی و ژئوشیمی توده¬های گابرویی شمال شرق سمنان. چهارمین گردهمایی علوم زمین و دومین کنگره بین¬المللی تخضصصی علوم زمین. سازمان زمین¬شناسی و اکتشافات معدنی کشور.
Andrew G., Conly, J. M., Brenen, H. B., and Steven, D. S., 2005. Arc to rift transitional volcanism in the Santa Rosalia region, Baja California Sur Mexico. Volcanology and Geothermal Research, 142, 303-341.
Ayabe, M., Takahashi, K., Shuto, K., Ishimoto, H., and Kawabata, H., 2012. Petrology and geochemistry of adakitic dacites and high-MgO andesites, and related calk-alkaline dacites from the Miocene Okoppe volcanic field, N Hllaido, Japan. Journal of Petrology, 53, 547-588.
Bailie R., Rajeshm H. M. and Gutzmer J., 2012. Bimodal volcanism at the western margin of the Kaapvaal Craton in the after math of collisional events during the Namaqua-Natal Orogeny: the Koras group, south Africa. Precambrian Research, 200, 163-183.
Castro, A., Aghazadeh, M. and Chchorro, M., 2013. Late Eocene-Oligocene post collisionsl monzonitic intrusions from the Alborz magmatic belt, NW Iran, An example of monzonite magma generation from a metasomatized mantle source. Lithos, 180-181, 109-127.
Christiansen, E.H. and McCurry M., 2008. Contrasting origins of Cenozoic silicic volcanic rocks from the western Cordillera of the United States. Bulltain Volcanology, 70, 251-267.
Fan W., Wang Y., Zhang A. and Zhang F. Zhang Y., 2010. Permian arc-back-arc basin development along the Ailaoshan tectonic zone: geochemical, isotopic and geochronological evidence from the Mojiang volcanic rocks, southwest China. Lithos, 119, 553-568.
Ghasemi, H. and Rezaei-Kahkhaei, M., 2015. Petrochemistry and tectonic setting of the Davarzan-Abbasabad Eocene volcanic (DAEV) rocks, NE Iran. Mineralogy and Petrology, 109, 235–252.
Ghorbani, M. R., 2006. Lead enrichment in Neotethyan volcanic rocks from Iran: the implications of a descending slab. Geochemical Journal, 40 (6), 557–68.
Gill, R., 2010. Igneous Rocks and Processes, a Practical Guide. A John Wiley and Sons Publication, 428.
Gorton, M. P., and Schandl, E. S., 2000. From continents to island arcs: a geochemical index of tectonic setting for arc-related and within-plate felsic to intermediate volcanic rocks. Canadian Mineralogist, 38, 1065–1073.
Green, N. L., 2006. Influence of slab thermal structure on basalt source regions and melting conditions: REE and HFSE constraints from Garibaldi volcanic belt, northern Cascadia subduction system. Lithos, 87, 23-49.
Hastie, R., Kerr, A. C., Pearce, J. A., and Mitchell, S. F., 2007, Classification of altered volcanic island arc rocks using immobile trace elements: development of Th-Co discrimination diagram. Journal of Petrology, 48(12), 234-235.
Irvine, T. N., and Baragar, W. R. A., 1971. A guide to the chemical of the common volcanic rocks. Canadian Journal of Earth Sciences, 8, 523-548.
Khalili Mobarhan, S., and Ahmadipour, H., 2010. Using magma mixing/mingling evidence for understanding magmatic evolution at mount Bidkhan statovolcano (south-east Iran). Journal of Sciences, Islamic Republic of Iran, 21(2), 137-153.
Khanna, T.C., Sai, V.V.S. and Bizimis M., Krishna A.K., 2015. Petrogenesis of basalt-high-Mg andesite-adakite in the Neoarchean Veligallu greenstone terrane: geochemical evidence for a rifted back-arc crust in the eastern Dharwar craton, India. Precambrian Research, 258, 260-277.
Kuscu, G.G. and Geneli F., 2010. Review of post-collisional volcanism in the central Anatolian volcanic province (Turkey), with special reference to the Tepekoy volcanic complex. International Journal of Earth Sciences, 99, 593-621.
Kuscu, G.G., and Floyd, P.A., 2001. Mineral compositional and textural evidence for magma mingling in the Saraykent volcanics. Lithos, 56, 207-230.
Liu H. Q., Xu Y. G., Tian W., Zhong Y. T, Mundil R., Li X. H., Yang Y. H., Luo Z. Y. and Shang-Guan S. M., 2014. Origin of two types of rhyolites in the Tarim large igneous province: consequences of incubation and melting of a mantle plume. Lithos, 319, 1-14.
Martynov, Y. A., Kimura, J. I., Khanchuk, A. I., Rybin, A. V., and Chashchin, A. A., 2007. Magmatic sources of Quaternary lavas in the Kuril island arc: New data on Sr and Nd isotopy. Doklady Earth Sciences, 417(8), 1206-1211.
Munker, C., Worner, G., Yogodzinsski, G., and Churicova T., 2004. Behavior of high field strength elements in subduction zones: constraints from Kamchatka-Aleutian arc lavas. Earth and Planetary Sciences Letters, 224, 275-293.
Nelson, S. T., and Montana, A., 1992. Sive-textured plagioclase in volcanic rocks prodused by rapid decompression. American Mineralogist, 77, 1242-1249.
Pang, K. N., Chung, S. L., Zarrinkoub, M. H., Khatib, M. M., Mohammadi, S. S., Yang, H. M., Chu, C. H., Lee, H. Y., and Lo, C. H., 2013. Eocene–Oligocene post-collisional magmatism in the Lut–Sistan region, eastern Iran: Magma genesis and tectonic implications. Lithos, 180-181, 234-251.
Pearce, J.A., 1996. A users guide to basalt discrimination diagrams, in Wyman, D.A., ed., Trace element geochemistry of volcanic rocks: applications for massive sulphide exploration: Geological Association of Canada. Short course notes, 12, 79–113.
Pfänder, J. A., Jochum, K. P., Kozakov, I., Kröner, A., and Todt, W., 2002. Coupled evolution of back-arc and island arc-like mafic crust in the Late-Neoproterozoic Agardagh Tes-Chem ophiolite, central Asia: evidence from trace element and Sr–Nd–Pb isotope data. Contribution to Mineralogy and Petrology, 143, 154-17.
Plank T., 2005. Constraints from Thorium/Lanthanum on sediment recycling at subduction zones and the evolution of the continents. Journal of Petrology, 46, 921-944.
Rudnick R.L. and Gao S., 2004. Composition of the continental crust. Treatise on Geochemistry, 3, 1-64.
Shelly, D., 1993. Igneous and Metamorphic Rocks Under the Microscope, Chapman and hall, London, 445.
Singer, S.B.A., Dungan, M., and Layne, G., 1995. Texture and Sr, Ba, Mg, Fe and Ti compositional profile in volcanic plagioclase: clues to the dynamics of calc-alkalin magma chamber. American Mineralogist, 80, 776-798.
Sun, S.S. and McDonough, W.F., 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and process. In: Saunders, A.D. and Norry, M.J. (Eds.), Magmatism in the Ocean Basins. Geological Society of London, Special Publication, 42, 313–345.
Tatsumi, Y., Nakashima, T., and Tamura, Y., 2002. The petrology and geochemistry of calc-alkaline andesite on Shodo-Shima island, SW Japan. Journal of Petrology, 43, 3-16.
Taylor, B., and Martinez, F., 2003. Back-arc basin basalt systematics. Earth and Planetary Science Letters, 210, 481-497.
Tian, L., Castillo, P.R., Hilton, D.H., Hawkins, J.W., Hanan, B.B., and Aaron J. Pietruszka, A.J., 2011. Major and trace element and Sr-Nd isotope signatures of the northern Lau Basin lavas: Implications for the composition and dynamics of the back-arc basin mantle. Journal of Geophysical Research, 116, 11-20.
Tian, L., Castrillo, P. R., Hawkins, J. W., Hilton, D. R., Hanan, B. H., and Pietruszka, A. J., 2008. Major and trace element and Sr-Nd isotope signatures of lavas from the central Lau Basin: implications for the nature and influence of subduction components in the back-arc mantle. Journal of Volcanology and Geothermal Research, 178, 657-670.
Tsuchiyama, A., 1985. Dissolution kenitics of plagioclase in the melt of the system diopside-albite-anorthosite and origin of dusty plagioclase in andesite. Contribution to Mineraloghy and Petrology, 89, 1-16.
Varekamp, J. C., Hesse, A., and Mandeville, C. W., 2010. Back-arc basalts from the Loncopue graben (Province of Neuquen, Argentina). Journal of Volcanology and Geothermal Research, 197, 313-328.
Wayer, S., Munker, C., and Mezger, K., 2003. Nb/Ta, Zr/Hf and REE in the depleted mantle: implications for the differentiation history of the crust-mantle system. Earth and Planetary Sciences Letters, 205, 24-309.
Winter, J.D., 2014. Principles of Igneous and Metamorphic Petrology. Second edition, Pearson new international edition, 745.
Wood, D.A., Joron, J.L., and Treuil, M., 1979. A re-appraisal of the use of trace elements to classify discriminate between magma series erupted in different tectonic settings. Earth and Planetary Sciences, Letters, 45, 326-336.