Geo-thermo-barometry in Jebale Barez plutonic complex by using amphibole and feldspars chemistry
Subject Areas :جمال رسولي 1 , aboozar ghorbani 2 , Vahid Ahadnejad 3
1 -
2 -
3 -
Keywords: Jebale-Barez plutonic complex Mineral chemistry Thermo-barometry AlT content of amphibole.,
Abstract :
Jebale-Barez plutonic complex is composed of granitoid intrusive bodies and is located in the East and southeastern of Jiroft province of Kerman. The plutonic complex is composed of granodiorite, quartzdiorite, granite and alkaligranite. Plutonic rocks are mainly composed of plagioclase, alkali-feldspar, biotite, amphibole and quartz. Based on microprobe analysis, plagioclases vary from andesine to labradorite and alkali feldspars occur as orthoclase. All amphiboles are magmatic and placed in three groups: calcic amphiboles, iron-rich amphiboles, amphiboles consist of Fe, Mg, Mn. The study of oxidation and reduction state of their source magma by amphibole chemistry, in dicated high oxygen fugacity. Therefore, granitoids of Jebale-Barez plutonic complex are I-type or related to magnetite series and the estimated oxygen fugacity imply oxidation magma and its formation in convergent plate boundary. On the basis of geo-thermo-barometric calculations, using Hamarstrom - Zen, Schmidt, Johnson - Rutherford, Smith - Anderson and Uchida methods, amphiboles have crystallized about 1.54 to 7.87 kbar at the depth about 18 to 23 km. As emplacement or crystallization temperature of Jebale-Barez plutonic complex based on the two feldspar thermometer using Anderson method has been ranges between 550 to 750 ºC and using Putirka method has been achieved between 710 to 830 ºC and based on Ti-in- amphibole thermometer has been ranges between 670 to 735 ºC. In addition, hornblende -plagioclase thermometer shows 653 to 732 °C for equilibrium of these two minerals
1- رسولی، ج.، قربانی، م و احدنژاد، و،. a1393. استفاده از شواهد صحرایی، میکروسکوپی و ژئوشیمیایی در تعیین منشاء انکلاوهای ماگمایی مجموعه پلوتونیک جبال بارز (شرق و شمالشرق جیرفت). مجله پترولوژی، دانشگاه اصفهان، زیرچاپ.
2- رسولی، ج.، قربانی، م و احدنژاد، و.، b1393. پترولوژی توده¬های نفوذی کمپلکس گرانیتوئیدی جبال بارز (خاور و جنوبخاور جیرفت). فصلنامه علوم زمین سازمان زمین¬شناسی و اکتشافات معدنی کشور، زیرچاپ.
3- رسولی، ج.، 1393. پترولوژي و ژئوشيمي مجموعه گرانيتوئيدي جبال¬بارز با نگرشي به زون¬بندی دگرسانی و کانی-سازی مس (شمال شرق جيرفت). رساله دوره دكتري، دانشگاه شهیدبهشتی، تهران، 366 صفحه.
4- قرباني، م.، 1393. زمین¬شناسی ايران، انتشارات آرین زمین، 488 ص.
5- قرباني، م،. 1386. زمينشناسي اقتصادي و منابع معدني و طبيعي ايران. مركز پژوهشي زمينشناسي پارس (آرينزمين).
6- يزدانفر، ا،. 1389. پتروژنز تودههاي نفوذي تأخيري (درهحمزه، ميجان و كرور) در باتوليت جبال¬بارز و ارتباط آنها با كانيسازي مس. پايان¬نامه کارشناسي ارشد، دانشگاه شهيدبهشتي تهران، 152صفحه.
7- Anderson, J.L., 1997. Status of thermobarometry in granitic batholiths, Transactions of Royal Society Edinburgh. Earth Science 87: 125-138.
8- Anderson, J.L., Smith, D.R., 1995. The effects of temperature and fO2 on the Al-in-hornblende barometer. Am Mineral 80:549– 559.
9- Auzanneau, E., Vielzeuf, D., and Schmidt, M.W., 2006. Experimental evidence of ecompression melting during exhumation of subducted continental crust. Contr Mineral Petrol 152:125-148.
10- Blundy, J., and Holland, T.J., 1992. Calcic amphibole equilibria and a new amphibole-plagioclase geothermometer. Contrib Mineral Petrol 104:208–224.
11- Ernest, W. G., 2002. Paragenesis and thermobarometry of Ca-amphiboles in the Barcroft granodioritic pluton, central White Mountains, eastern California”, American Mineralogists, 87, 478-490.
12- Ghent, E. D., Nicholls, j., Simony, P. S., Sevigny, J. H., and Stout, M. Z., 1991. Hornblende barometry of the Nelson batholith, southeastern British Columbia: Tectonic implications”, Canadian Journal of Earth Sciences 28, 1982-1991.
13- Hammarstrom, J. M., and Zen, E., 1986. Aluminum in hornblende: An empirical igneous geobarometer”, American Mineralogist 71. 1297-1313.
14- Helmy, H.M., Ahmed, A.F., E1Mahallawi, M.M., and Ali, S.M., 2004. Pressure, temperature and oxygen fugacity conditions of calc-alkaline granitoids. Eastern Desert of Egypt and tectonic implication, J. of African Earth Science. 38, 255-268.
15- Helz, R.T., 1973. Phase relations of basalts in their melting range at PH2O = 5kb as a function of oxygen fugasity”, Journal of Petrology 14, 249-302.
16- Holland, T.J.B., and Blundy, J.D., 1994. Non-ideal interactions in calcic amphiboles and their bearing on amphibole-plagioclase thermometry. Contrib Mineral Petrol 116:433–447.
17- Hollister, L.S., 1987 Confirmation of the empirical correlation of Al in hornblende with pressure of solidification of calcalkaline plutons”, American Mineralogists 72, 231- 239.
18- Johnson, M.C., and Rutherford, M.J., 1989. Experimental calibration of the aluminum-in-hornblende geobarometer with application to Long Valley caldera (California) volcanic rocks. Geology 17:837–841.
19- Koester, E., Pawley, A.R., Fernandes, L.A., Porcher, C.C., and Soliani, J.r. E., 2002. xperimental melting of cordierite gneiss and the petrogenesis of syntranscurrent peraluminous granites in southern Brazil. J Petrol 43:1595-1616.
20- Kroll, H., Evangelakakis C., Voll, G., 1993. Two feldspar geothermometery: a review and revision for slowly cooled rocks", Contribution to Mineralogy and Petrology. 510-518.
21- Leake, B.E., 1997. Nomenclature of amphiboles of the subcommittee on amphiboles of the international mineralogical association commission on new minerals and mineral names”, Europian Journal of mineralogy 9, 623-651.
22- Patino-Douce, A.E., 2005. Vapor-absent melting of tonalite at 15-32 kbar. J Petrol 46:275- 290.
23- Putirka, K.D., 2008. Thermometers and barometers for volcanic systems. Rev Mineral Geochem 69:61–120.
Raase P. 1974. Al and Ti contents of hornblende,indicators of pressure and temperature of regional metamorphism, Contributions to mineralogy and Petrology 45, 231- 236.
24- Rasouli, J., Ghorbani, M and Ahadnejad, V. 2014. Field observations, Petrography and microstructures study of Jebale Barez Plutonic complex (East - North East Jiroft). Journal of Tethys: 2. 3, 178–195.
25- Ridolfi, F., and Renzulli, A., 2012. Calcic amphiboles in calc-alkaline and alkaline magmas: thermobarometric and chemometric empirical equations valid up to 1,130_C and 2.2 GPa. Contrib Mineral Petrol (2012) 163:877–895.
26- Schmidt, M.W., 1992. Amphibole composition in tonalite as a function of pressure; an experimental calibration of the Al-in-hornblende barometer. Contrib Mineral Petrol 110:304–310.
27- Stein, E., and Dietl, C., 2001. Hornblende thermobarometry of granitoids from the Central Odenwald (Germany) and their implications for the geotectonic development of the Odenwald. Mineralogy and Petrology 72: 185–207.
28- Stone, D., 2000. Temperatue and pressure Variationsin suites of Archean felsic plutonic rocks, Berens River area, North west superior province Ontario, Canada, Canadian Mineralogist, 38 , 455- 470.
29- Stocklin, J., 1968. Structural history and tectonics of Iran: a review. American Association of Petrolum Geologists Bulletin 52, 1229–1258.
30- Uchida, E., Endo, S., and Makino, M., 2007. Relationship between solidification depth of granitic rocks and formation of hydrothermal ore deposits. Resource Geology Vol. 57, No. 1: 47–56.
31- Vynhal, C.R., McSween, H.Y., and Speer, J.A., 1991. Hornblende chemistry in southern Appalachian granitoides: Implications for aluminiumhornblende thermobarometry and magmatic epidote stability”, American Mineralogists, 76, 176 - 188.