Car pollution control using catalyst
Subject Areas : Environmental sciences
1 - Dynamic non-profit higher education institution
Keywords: Automotive emissions, catalytic converter, air-fuel ratio, engine and fuel modification,
Abstract :
The emission of pollutants from vehicles is generally low, but the number of vehicles on the road increases, so the environmental pollution also increases. About 35% of CO, 30% of HC and 25% of NOx produced in the atmosphere are from the transportation sector. These pollutants have adverse effects on the environment and human health. Greenhouse gas emissions from vehicles generally depend on the air-to-fuel ratio. Control techniques for exhaust emissions include engine modifications, fuel pretreatment, fuel additives, exhaust gas recirculation (EGR), positive crankcase ventilation (PCV), and the use of catalytic converters. A catalytic converter is a device that converts more toxic exhaust gases into less toxic pollutants. There are different types of catalysts used in the purification of car exhaust gases, such as catalysts of noble metals and basic metals, etc. The catalytic converter was effective and compatible in reducing harmful exhaust gas emissions so that it can be used in trucks, buses, cars, motorcycles and other equipped constructions. This article will discuss various types of recent advances in catalysts for controlling vehicle exhaust pollution.
References
Abdi et al., 2020, Abdi K., Ezoddin M., Pirooznia N. Temperature-controlled liquid–liquid micro extraction using a biocompatible hydrophobic deep eutectic solvent formic roextraction of palladium from catalytic converter and road dust samples prior to ETAAS determination
Aguila J., Chan N., Courtis J. Proposed Regulations for California Phase 2 Reformulated Gasoline Technical Support Document California Air Resources Board, Sacramento, California (1991)
Air improvement resource, Inc.
Examination of Temperature and RVP Effects on CO Emissions in EPA’s Certification Database: Final Report CRC Project No. E-74a (2005)
Alfuso, S., Aurlemma, M., Police, G., Prati, M.V., 1993. The effect of methyl-ester of rapeseed oil on combustion and emissions of di-diesel engines. SAE Paper 932801. SAE International. Warrendale, Pennsylvania.
Andre, J.M., Joumard, R., 2005. Modeling of cold start excess emissions for passenger cars. INRETS Report, No. LTE 0509. Bron, France. p. 239, http://www.inrets.fr
.
Anon, Status of Vehicular Pollution Control Programmed in India: Report
Central pollution control Board (2010)
Ball D,A warm-up and under-floor converter parametric study
(1994)SAE 932765
Bartley, G.J.J., 2001. Method for reducing cold-start hydrocarbon emissions in a gasoline, natural gas, or propane fueled engine. US Patent 6244044.
Bedi U., Chauhan S.Modeling the combustion of volatile organic compound (VOC) ethanein monolithic catalytic converter Mater. Today: Proc., 28 (2020), pp. 1727-1731
Bera P., Hegde M.S.Recent advances in auto exhaust catalysis J. Indian Inst. Sci., 90 (2010), pp. 299-325
Bhandarkar S.Vehicular pollution, Their effect on human health and mitigation measuresVeh. Eng., 1 (2) (2013), pp. 33-40
Bhasin M., Nagaki D., Koradi P., Sherman D., Ankrum C.Novel catalyst system for treating exhaust gases from internal combustion and stationary source engines (1993)SAE 930254
Bhave P.P., Kulkarni N.S.Air pollution and control legislation in India J. Inst. Eng. (India) Ser. A, 96 (3) (2015), pp. 259-265
Borland, M., Zhao, F., 2002. Application of secondary air injection for simultaneously reducing converter-in emissions and improving catalyst light-off performance. SAE Paper 2002-01-2803.
Burk P.L., Hochmuth J.K., Anderson D.R., Sung S., Punke A., Dahle U., Tauster S.J., Tolentino C.O., Rogalo J., Miles G., Mignano M., Niejako M.
Cold start hydrocarbon emissions control via admixing three way conversion catalysts with heat exchange and hydrocarbon adsorption phenomena Catal. Automot. Pollut. Control III, 96 (1995), pp. 919-930
Central pollution control board (CPCB)
India, Status of the vehicular pollution control programmed in India (2007) PROBES/ 136 /2010
Chan, S.H., Zhu, J., 1999. The significance of high value of ignition retard control on the catalyst light-off. SAE Technical Paper 962077.
Chand,Environmental protection and regulations in India. Role of the central polloution control board
Indian J. Public Admin., 64 (4) (2018), pp. 645-663
Chauhan S.Noble metal catalysts for monolithic converters J. Chem. Pharm. Res., 4 (2010), pp. 602-611
Chhatwal G.R., Mehra M.C., Sataka M., Katyal T., Katyal M., Nagahiro T.
Environmental Air Pollution and its Control ,Anmol Publications, New Delhi (1975
Cholakov G.S.
Control of exhaust emissions from internal combustion engine vehicles,Pollut. Control Technol., 3 (2003), pp. 22-36
Clarke T.J., Davies T.E., Kondrat S.A., Taylor S.H. Mechano-chemical synthesis of copper manganese oxide for the ambient temperature oxidation of carbon monoxide,Appl. Catal. B: Environ., 165 (2015), pp. 222-231
Clean Air Act Overview. Clean Air Act Text (1990)
Cornejo I., Hayes R.E., Nikrityuk,A new approach for the modeling of turbulent flows in automotive catalytic converters,Chem. Eng. Res. Des., 140 (2018), pp. 308-319
Cullen M.J., Rollinger J., Kapolnek M., Baskins R., Willard K.,Cold start emission reduction monitoring system and method (2007)US 2007/0283682 A1, Dec. 13
Czaplewski K.F., Reitz T.L., Kim Y.J., Snurr R.Q.One-dimensional zeolites as hydrocarbon traps
Microporous Mesoporous Mater., 56 (1) (2002), pp. 55-64
Dallmann R., Kirchstetter T.W., DeMartini S.J., Harley R.A.Quantifying on-road emissions from gasoline-powered motor vehicles: accounting for the presence of medium- and heavy-duty diesel trucks
Environ. Sci. Technol., 47 (23) (2013), pp. 13873-13881
Dey S., Dhal G.C.Deactivation and regeneration of hopcalite catalyst for carbon monoxide oxidation: a review,Mater. Today Chem., 14 (2019), Article 100180
Dey S., Dhal G.C.Highly active palladium nanocatalysts for low-temperature carbon monoxide oxidation
Polytechnica (2019),
Dey S., Dhal G.C.The catalytic activity of cobalt nanoparticles for low-temperature oxidation of carbon monoxide,Mater. Today Chem., 14 (2019), Article 100198
Dey S., Dhal G.C.Applications of silver nanocatalysts for low-temperature oxidation of carbon monoxide
Inorg. Chem. Commun., 110 (2019), Article 1076141-12
Dey S., Dhal G.C.Catalytic conversion of carbon monoxide into carbon dioxide over spinel catalysts: An overview Mater. Sci. Energy Technol., 2 (2019), pp. 575-588
Dey S., Dhal G.C.A review of synthesis, structure and applications in hopcalite catalysts for carbon monoxide oxidation,Aerosol Sci. Eng. (2019)
Dey S., Dhal G.C.Materials progress in the control of CO and CO2 emission at ambient conditions: An overview,Mater. Sci. Energy Technol., 2 (2019), pp. 607-623
Dey S., Dhal G.C.Ceria doped CuMnOx as carbon monoxide oxidation catalysts: Synthesis and their characterization,Surfaces Interfaces, 18 (2019), Article 100456
Dey S., Dhal G.C.Cerium catalysts applications in carbon monoxide oxidations,Mater. Sci. Energy Technol., 3 (2019), pp. 6-24
Dey S., Dhal G.C.Application of perovskite catalysts for carbon monoxide emissions control: an overview,Adv. Compos. Hybrid Mater. (2019), pp. 1-18,
Dey S., Dhal G.C.Property and structure of various platinum catalysts for low-temperature CO oxidations
Mater. Today Chem., 16 (2020), pp. 1-40
Dey S., Dhal G.C.The performance of highly active manganese oxide catalysts for ambient conditions carbon monoxide oxidation,Curr. Res. Green Sustain. Chem., 3 (2020), Article 100012
Dey S., Dhal G.C.Synthesis of CuMnOx catalysts by novel routes for selective catalytic oxidation of carbon monoxide,Comput. Toxicol., 16 (2020), Article 100132
Dey S., Dhal G.C.Controlling carbon monoxide emissions from automobile vehicle exhaust using copper oxide catalysts in a catalytic converter,Mater. Today Chem., 17 (2020), Article 100282
Dey S., Dhal G.C., Mohan D., Prasad R.Effect of preparation conditions on the catalytic activity of CuMnOx catalysts for CO Oxidation,Bull. Chem. React. Eng. Catal., 12 (3) (2017), pp. 437-451
Dey S., Dhal G.C., Mohan D., Prasad R.Kinetics of catalytic oxidation of carbon monoxide over CuMnAgOx Catalyst,Mater. Discov., 8 (2017), pp. 18-25
Dey S., Dhal G.C., Mohan D., Prasad R.Study of Hopcalite (CuMnOx) catalysts prepared through a novel route for the oxidation of carbon monoxide at low temperature,Bull. Chem. React. Eng. Catal., 12 (3) (2017), pp. 393-407
Dey S., Dhal G.C., Mohan D., Prasad R.Synthesis and characterization of AgCoO2 catalyst for oxidation of CO at a low temperature,Polyhedron, 155 (2018), pp. 102-113
Dey S., Dhal G.C., Mohan D., Prasad R.The choice of precursors in the synthesizing of CuMnOx catalysts for maximizing CO oxidation
Int. J. Ind. Chem. (2018),
Dey S., Dhal G.C., Mohan D., Prasad R.Effect of various metal oxides phases present in CuMnOx catalyst for selective CO oxidation,Mater. Discov., 12 (2018), pp. 3-71
Dey S., Dhal G.C., Mohan D., Prasad R.
Low-temperature complete oxidation of CO over various manganese oxide catalysts
Atmos. Pollut. Res., 9 (2018), pp. 755-763
Dey S., Dhal G.C., Mohan D., Prasad R.Ambient temperature complete oxidation of carbon monoxide using hopcalite catalysts for fire escape mask applications,Adv. Compos. Hybrid Mater. (2019), pp. 1-19,
Dey S., Dhal G.C., Mohan D., Prasad R.Advances in transition metal oxide catalysts for carbon monoxide oxidation: a review,Adv. Compos. Hybrid Mater., 2 (2019), pp. 626-656
Dey S., Dhal G.C., Mohan D., Prasad R.Structural and catalytic properties of Fe and Ni doping on CuMnOx catalyst for CO oxidation,Adv. Compos. Hybrid Mater. (2019), pp. 1-16,
Dey S., Dhal G.C., Mohan D., Prasad R.Synthesis of highly active Cobalt catalysts for low temperature CO oxidation,Chem. Data Collect., 24 (2019), Article 100283
Dey S., Dhal G.C., Mohan D., Prasad R.Application of hopcalite catalyst for controlling carbon monoxide emission at cold-start emission conditions,J. Traffic Transp. Eng. (Engl. Ed.), 6 (5) (2019), pp. 419-440
Dey S., Dhal G.C., Mohan D., Prasad R., Gupta R.N.Cobalt doped CuMnOx catalysts for the preferential oxidation of carbon monoxide,Appl. Surf. Sci., 441 (2018), pp. 303-316
Dey S., Dhal G.C., Prasad R., Mohan D.Total oxidation of CO by CuMnOx catalyst at a low temperature
Int. J. Sci. Eng. Res., 7 (10) (2016), pp. 1730-1737
Dey S., Dhal G.C., Prasad R., Mohan D.Effect of nitrate metal (Ce, Cu, Mn and Co) precursors for the total oxidation of carbon monoxide,Resour.-Eff. Technol., 3 (2016), pp. 293-302
Dey S., Mehta N.S.Synthesis and applications of titanium oxide catalysts for lower temperature CO oxidation,Curr. Res. Green Sustain. Chem., 3 (2020), Article 100022
Dey S., Mehta N.S.Oxidation of carbon monoxide over various nickel oxide catalysts in different conditions: A review,Chem. Eng. J. Adv., 1 (2020), Article 100008
Draper H.D.The catalytic oxidation of carbon monoxide. IV. The pore volume of the catalysts manganese dioxide, copper oxide, copper oxide and mixtures of these oxides,J. Am. Chem. Soc., 50 (1928), pp. 2637-2653
Dutta D., Das M.D.Effect of C/N ratio and microelements on nutrient dynamics and cell morphology in submerged fermentation of Aspergillus giganteus MTCC 8408 using Taguchi DOE,Biotech, 7 (2017), p. 34
Dutta D., Das M.D.Optimization and partial characterization of intracellular anticandidal protein from Aspergillus giganteus MTCC 8408 using taguchi DOE,Bioengineered, 8 (5) (2017), pp. 536-548
Elangovan S.P., Ogura M., Davis M.E., Okubo T.SSZ-33: A promising material for use as a hydrocarbon trap,J. Phys. Chem. B, 108 (35) (2004), pp. 13059-13061
Environmental protection agency,Control of air pollution from new motor vehicles and new motor vehicle engines; Interim regulations for cold temperature carbon monoxide emissions from light-duty vehicles and light-duty trucks; Proposed rule,Fed. Reg., 55 (180) (1991), pp. 38250-38271
Faiz A., Weaver C.S., Walsh M.P.Air Pollution from Motor Vehicles, Standards and Technologies for Controlling Emissions,The World Bank Reconstruction and Development, Washington DC (1996), pp. 23-46
Favez J.Y., Weilenmann M., Stilli J.Cold start extra emissions as a function of engine stop time: Evolution over the last 10 years,Atmos. Environ., 43 (2009), pp. 996-1007
García-Vázquez M., Zhang G., Hong Z., Gu X., García-García F.Micro-structured catalytic converter for residual methane emission abatement,Chem. Eng. J., 396 (2020), Article 125379
Ghaffari A., Shamekhi A.H., Saki A., Kamrani E.Adaptive Fuzzy Control for Air-Fuel Ratio of Automobile Spark Ignition Engine, Vol. 48,World Academy of Science, Engineering and Technology (2008), pp. 284-292
Gottberg I., Rydquist J., Backlund J., Wallman S., Maus W., Bruck R., Swars H.New potential exhaust gas after treatment technologies for Clean Car Legislation (1986)SAE 910840
Gupta P.K., Das L.M., Gulati R.Performance evaluation of a hydrogen-fuelled spark ignition engine using electronically controlled solenoid actuated injection system,Int. J. Hydrogen Energy, 25 (2000), pp. 569-579
Heck R.M., Farrauto R.J.Automobile exhaust catalysts,Appl. Catal. A: Gen., 221 (2001), pp. 443-457
Heck, R.M., Hu, Z., Smaling, R., Amundsen, A., Bourke, M.C., 1995. Close coupled catalyst system design and ULEV performance after 1050 C aging. SAE Paper 952415.
Heywood J.B.Motor Vehicle Emissions Control: Past Achievements, Future Prospects,Institution of Mechanical Engineers, George Stevenson Lecture (1997)
Hochmuth, J.K., Burk, P.L., Tolentino, C., Mignano, J.J., 1993. Hydrocarbon traps for controlling cold start emissions. SAE Paper 930739.
Hou K., Deng B., Chen Y., Ran J., Fu J.For cleaner exhaust of a high performance motorcycle: A macroscopic comparative study of catalytic converters under world-wide motorcycle test cycle
J. Clean. Prod. (2020), pp. 1-12
Houshmand D., Roozbehani B., Badakhshan A.Thermal and catalytic degradation of polystyrene with a novel catalyst,Int. J. Sci. Emerg. Technol., 5 (2013), pp. 234-238
Hutchings G.J., Mirzaei A.A., Joyner R.W., Siddiqui M.R.H., Taylor S.H.Ambient temperature CO oxidation using copper manganese oxide catalysts prepared by co-precipitation: effect of ageing on catalyst performance,Catal. Lett., 42 (1996), pp. 21-24
Iliyas A.One-Dimensional Molecular Sieves for Hydrocarbon Cold-Start Emission Control
(Ph.D. thesis)The University of New Brunswick, Canada (2008)
India Bharat Stage VI emission standards,Policy Update,International Council of Clean Transportation (2016)
Ismaila S.O., Bolaji B.O., Adetunji O.R., Adekunle N.O., Yusuf T.A., Sanusi H.O.On vehicular emissions of petrol and diesel engines,Int. J. Eng., 1584 (2013), pp. 178-180
Jansson J.Low-temperature CO oxidation over Co3O4/Al2O3J. Catal., 194 (2000), pp. 55-60
Johansson C., Norman M., Burman L.Road traffic emission factors for heavy metals,Atmos. Environ., 43 (31) (2009), pp. 4681-4688
Jones C.D.The Ambient Temperature Oxidation of Carbon Monoxide by Copper-Manganese Oxide Based Catalysts(Ph.D. thesis)Cardiff Catalysis Institute, Cardiff University, UK (2006)
Kandylas I.P., Stamatelos A.M.Engines exhaust system design based on heat transfer computation
Energy Convers. Manag., 40 (1999), pp. 1057-1072
Kaspar J., Fornasiero P., Hickey N.Automotive catalytic converters: current status and some perspectives
Catal. Today, 7 (2003), pp. 419-449
Keshan E., Edward J., Samul R.Effect of surface treatment of the support on CO oxidation over carbon-supported Wacker-type catalysts,J. Catal., 193 (2008), pp. 5-15
Kishi N., Hashimoto H., Fujimori K., Ishii K., Komatsuda T.Development of the ultra low heat capacity and highly insulating (ULOC) exhaust manifold for ULEV(1998)SAE 980937
Koltsakis C., Stamateios A.Catalytic automotive exhaust after treatment,Prog. Energy Combust. Sci., 23 (1997), pp. 1-39
Kondrat S.A., Davies T.E., Zu Z., Boldrin P., Bartley J.K., Carley A.F., Taylor S.H., Rosseinsky M.J., Hutchings G.J.The effect of heat treatment on phase formation of copper manganese oxide: Influence on catalytic activity for ambient temperature carbon monoxide oxidation,J. Catalysis, 281 (2011), pp. 279-289
Kramer M., Schmidt T., Stowe K., Maier W.F.Structural and catalytic aspects of sol–gel derived copper manganese oxides as low-temperature CO oxidation catalyst,Appl. Catal. A: Gen., 302 (2006), pp. 257-263
Lafyatis D.S., Ansell G.P., Bennett S.C., Frost J.C., Millington P.J., Rajaram R.R., Walker A.P., Ballinger T.H.Ambient temperature light-off or automobile emission control,Appl. Catal. B Environ., 18 (1–2) (1998), pp. 123-135
Layla A., Azim M., Ali K.A., Yadollah M.,Effects of excess cobalt oxide nanocrystallites on LaCoO3 catalyst on lowering the light off temperature of CO and hydrocarbons oxidation,Iran. J. Chem. Eng., 27 (2008), pp. 71-77
Lee D.Effects of Secondary Air Injection During Cold Start of SI Engines(Ph.D. thesis) Massachusetts Institute of Technology, USA (2010)
Libardi S.H., Skibsted L.H., Cardoso D.R.Oxidation of carbon monoxide by perferrylmyoglobin
J. Agric. Food Chem., 62 (8) (2014), pp. 1950-1955
Lisnyak V.V., Safonova V.V., Ischenko E.V., Stratiichuk D.A., Boldyrieva O., Yu O., Yatsymyrskyi A.V.Preparation and activity of Pt (Pd)/WP2O7 catalysts for H2 oxidation,Res. J. Chem. Sci., 2 (6) (2012), pp. 50-54
Lu, G.Y., Zhang, Z.G., 2010. Close coupled catalyst for purification of exhaust gas and the preparation thereof. US Patent: 20100048383.
Marsh, P., Acke, F., 2001. Application guideline to define catalyst layout for maximum catalytic efficiency. SAE Paper 2001-01-0929.
Mehta N.S., Kumar P., Tripathi P., Pyare R., Majhi M.R.Influence of alumina and silica addition on the physico-mechanical and dielectric behavior of ceramic porcelain insulator at high sintering temperature,Bol. Soc. Esp. Cerám. Vidr., 57 (2017), pp. 151-159
Mehta N.S., Pandey J.C., Pandey N., Pyare R., Majhi M.R.Developing a high strength physico-mechanical and dielectric ceramic porcelain insulator using zirconia as an additive,Mater. Res. Express, 5 (2018), Article 075202
Mehta N.S., Sahu P.K., Ershad M., Saxena V., Pyare R., Majhi M.R.Effect of ZrO2 on the sintering behavior, strength and high-frequency dielectric properties of electrical ceramic porcelain insulator,Mater. Res. Express, 5 (2018), pp. 40-52
Mehta N.S., Sahu A., Pandey N., Pyare R., Majhi M.R. Effect of sintering on physical, mechanical and electrical properties of alumina-based porcelains insulator using economic raw materials doped with zirconia,Jof Aust. Ceram. Soc., 55 (2019), pp. 987-997
Nesamani K.S.Estimation of automobile emissions and control strategies in Indi,Sci. Total Environ., 408 (8) (2010), pp. 1800-1811
Oser P., Mueller E., Hartel G., Schurfeld A.Novel emission technologies with emphasis on catalyst cold start improvements status report on VW-Pierburg burnerl catalyst systems(1994)SAE 940474
Ou Y., West J.J., Smith S.J., Nolte C.G., Loughlin D.H.Air pollution control strategies directly limiting national health damages in the US,Nature Commun., 11 (2020), p. 957
1-11
Patil, M.D., Hertl, W., Williams, J.L., Nagel, J.N., 1996. In-line hydrocarbon adsorber system for ULEV. SAE Paper 960348.
Pope C.A., Bates D.V., Raizenne M.E.Health effect of particular air pollution: Time for measurement
Environ. Health Perspect., 103 (1995), pp. 472-480
Praserthdam P., Majitnapakul T.
Effect of platinum on supported copper catalysts for carbon monoxide removal,Appl. Catal. A: Gen., 108 (1994), pp. 21-30
Puértolas B., Navlani-Garcıa M., López J.M., Garcıa T., Murillo R., Mastral A.M., Navarro M.V., Lozano-Castello D., Bueno-Lopez A., Cazorla-Amoroś D.Molecular simulation design of a multisite solid for the abatement of cold start emissions,Chem. Commun., 48 (2012), pp. 6571-6573
Pulkrabek W.W.Engineering Fundamentals of the Internal Combustion Engine,Pearson Prentice Hall, New Jersey (2004)
Pundir B.P.Engine Emissions: Pollutant Formation and Advances in Control Technology, Vol. 4
Book Publications (1998), pp. 115-155
Rajvanshi A.K.Electric and improved cycle rickshaw as a sustainable transport system for India
Current Sci., 83 (6) (2002), pp. 1-6
Robert N.C., Lance L.S., Hasan K., Marco C., William C.P.Catalytic combustion technology development for gas turbine engine applications,Am. Chem. Soc. Res., 32 (2005), pp. 805-810
Roy M., Harrison D.Pollution Causes, Effects & Control(second ed.), The Royal Society of Chemistry (2002), pp. 221-234
Russ, S., Thiel, M., Lavoie, G., 1999. SI engine operation with retarded ignition: Part 2 - HC emissions and oxidation. SAE Technical Paper 1999-01-3507. SAE Special Publication 1485.
Russell A., Epling W.S.Diesel oxidation catalysts,Catal. Rev. Sci. Eng., 53 (2011), pp. 337-423
Satterfield C.N.Heterogeneous Catalysis in Practice,McGraw Hill, New York (1980)
Schwela D., Zali O., Schwela,Motor Vehicle Air Pollution Public Health Impact and Control Measures
World health organization and ECOTOX (1997), pp. 1-338
Shehata M.S., K. Razak.Engine performance parameters and emissions reduction methods for spark ignition engine,Eng. Res. J., 120 (2008), pp. 33-57
Shuhaili A.F.A., Ihsan S.I., Faris W.Air pollution study of vehicles emission in high volume traffic: Selangor, Malaysia as a case study,WSEAS Trans. Syst., 2 (12) (2013), pp. 67-83
Smit R., Ntziachristos L., Boulter,Validation of road vehicle and traffic emission models—a review and meta-analysis,Atmos. Environ., 44 (25) (2010), pp. 2943-2953
State of California,, 1994. California environmental protection agency, air resources board, draft discussion paper for the low-emission vehicle and zero-emission vehicle workshop on 25 March.
Stewart J., Ren Z.A.Subzonal indoor airflow, temperature and contaminant dispersion model,Build. Environ., 41 (2006), pp. 1631-1648
Summers J., Skowron J., Miller M.,Use of light-off catalysts to meet the California LEV/ULEV standards
(1993)SAE 930386
Sun, J., Sivashankar, N., 1998. Issues in cold start emission control for automotive IC Engines. In: Proceedings of the American Control Conference. Philadelphia, Pennsylvania. pp. 1372–1376.
Takei Y., Hirohiko H., Okada M., Abe K.,Effect of gasoline components on exhaust hydrocarbon components(1993)SAE 932670
Touloumi G., katsouyanni K.Short term effect of air pollution on mortality: results of the APHEA project for the Athens population,Epidemology, 6 (59) (1995)
Twigg M.V.Catalytic control of emissions from cars,Catal. Today, 163 (1) (2011), pp. 33-41
Twigg M.V., Phillips P.R.Cleaning the air we breathe – controlling diesel particulate emissions from passenger cars,Platin. Met. Rev., 53 (1) (2009), pp. 27-34
Venkateswarlu K., Kumar R.A., Krishna R., Sreenivasan M.,Modeling and fabrication of catalytic converter for emission reduction,Mater. Today: Proc. (2020), pp. 1-7
Weilenmann M., Soltic P., Saxer C., Forss A.M., Heeb N.
Regulated and non-regulated diesel and gasoline cold-start emissions at different temperatures
Atmos. Environ., 39 (2005), pp. 2433-2441
Williams, J.L., Patil, M.D., Hertl, W., 1996. By-pass hydrocarbon adsorber system for ULEV. SAE Paper 960343.
Xue W.B., Wang J.N., Niu H., Yang J.T., Han B.P., Lei Y., Chen H.L., Jiang C.L.Assessment of air quality improvement effect under the national total emission control program during the twelfth national five-year plan in China,Atmos. Environ., 68 (2013), pp. 74-81
Automobile pollution control using catalysis
Abstract
The emissions of pollutants from vehicles are generally low but the numbers of vehicles increasing on the road therefore the environmental pollutions are also increases. About 35% of CO, 30% of HC and 25% percent of NOx produced into the atmosphere is from the transportation sector. These pollutants have adverse effects on the environment and human health. The emissions from vehicles are generally depends upon the air–fuel ratio. The control techniques for exhaust gas emissions are engine modifications, fuel pretreatment, fuel additives, exhaust gas recirculation (EGR), positive crankcase ventilation (PCV) and an application of catalytic converters. A catalytic converter is a device that converts more toxic exhaust gas pollutants into less toxic pollutants. There are different types of catalysts used in the automobile exhaust gas treatment like noble metal and base metals catalysts etc. The catalytic converter was effective and consistent for reducing the noxious tailpipe emissions so that it was developed for use in the trucks, buses, cars, motorcycles and other construction equipped. This paper will discuss about the different types of recent developments in catalysis for automobile exhaust pollution control.
Keywords
Automotive emissions
Catalytic converter
air–fuel ratio
Engine and fuel modification