Content Sharing Using D2D communications over 5G Networks
Subject Areas : electrical and computer engineeringmeisam kargar 1 , Marzieh Varposhti 2 , Leila Samimi 3
1 - Department of computer engineering, Shahrekorf university
2 - Shahrekord University
3 - Department of Computer Engineering, Shahrekord University
Keywords: D2D communications, Potential game, Edge caching, 5G network,
Abstract :
The rapid development of intelligent hardware, Internet of Things (IoT), and the emergence of various applications has led to an unprecedented increase in mobile data traffic. Therefore, the efficiency of network resource utilization and bandwidth needs to be improved effectively. Currently, Device-to-Device (D2D) communication technology can provide an effective tool for enhancing 5G networks by enabling direct communication between devices. The use of D2D communication can reduce the load on the 5G network and improve service quality. One of the main issues in this regard is how to manage communication resources and select communication links. In this article, we examine the problem of managing D2D communication links for content transmission between communication devices and formulate it as a binary linear optimization problem. To solve this problem, we propose a method based on game theory, where considering user devices containing the desired files for transmission as players, we design an exact potential game and then propose a distributed learning algorithm to reach a Nash equilibrium. Simulation results confirm the satisfactory performance of the proposed algorithm.
[1] Y. Liu, M. Peng, G. Shou, Y. Chen, and S. Chen, "Toward edge intelligence: multiaccess edge computing for 5G and Internet of Things," IEEE Internet of Things J., vol. 7, no. 8, pp. 6722-6747, Aug. 2020.
[2] X. Sun and N. Ansari, "Latency aware workload offloading in the cloudlet network," IEEE Communications Letters, vol. 21, no. 7, pp. 1481-1484, Jul. 2017.
[3] Z. Hu, Z. Zheng, T. Wang, L. Song, and X. Li, "Caching as a service: small-cell caching mechanism design for service providers," IEEE Trans. on Wireless Communications, vol. 15, no. 10, pp. 6992-7004, Oct. 2016.
[4] D. Liu and C. Yang, "Caching at base stations with heterogeneous user demands and spatial locality," IEEE Trans. on Communications, vol. 67, no. 2, pp. 1554-1569, Feb. 2019. [5] M. Reiss-Mirzaei, M. Ghobaei-Arani, and L. Esmaeili, "A review on the edge caching mechanisms in the mobile edge computing: a social-aware perspective," Internet of Things, vol. 22, Article ID: 100690, Jul. 2023.
[6] M. Waqas, et al., "A comprehensive survey on mobility-aware D2D communications: principles, practice and challenges," IEEE Communications Surveys & Tutorials, vol. 22, no. 3, pp. 1863-1886, Third Quarter 2019.
[7] J. Yao, T. Han, and N. Ansari, "On mobile edge caching," IEEE Communications Surveys & Tutorials, vol. 21, no. 3, pp. 2525-2553, Third Quarter 2019.
[8] U. N. Kar and D. K. Sanyal, "An overview of device-to-device communication in cellular networks," ICT Express, vol. 4, no. 4, pp. 203-208, Dec. 2018.
[9] S. Jayakumar, "A review on resource allocation techniques in D2D communication for 5G and B5G technology," Peer-to-Peer Networking and Applications, vol. 14, pp. 243-269, 2021.
[10] R. Rathi and N. Gupta, "Game theoretic and non-game theoretic resource allocation approaches for D2D communication," Ain Shams Engineering J., vol. 12, no. 2, pp. 2385-2393, Jun. 2021.
[11] K. Pandey and R. Arya, "Lyapunov optimization machine learning resource allocation approach for uplink underlaid D2D communication in 5G networks," IET Communications, vol. 16, no. 5, pp. 476-484, Mar. 2022.
[12] M. H. Zafar, I. Khan, and M. O. Alassafi, "An efficient resource optimization scheme for D2D communication," Digital Communications and Networks, vol. 8, no. 6, pp. 1122-1129, Dec. 2022.
[13] I. Ioannou, V. Vassiliou, C. Christophorou, and A. Pitsillides, "Distributed artificial intelligence solution for D2D communication in 5G networks," IEEE Systems J., vol. 14, no. 3, pp. 4232-4241, Sept. 2020.
[14] W. Jiang, et al., "Joint computation offloading and resource allocation for D2D-assisted mobile edge computing," IEEE Trans. on Services Computing, vol. 16, no. 3, pp. 1949-1963, May/Jun. 2022.
[15] L. L. H. Xing, J. Xu, and A. Nallanathan, "Joint task assignment and resource allocation for D2D-enabled mobile-edge computing," IEEE Trans. on Communications, vol. 67, no. 6, pp. 4193-4207, Jun. 2019.
[16] W. Song, Y. Zhao, and W. Zhuang, "Stable device pairing for collaborative data dissemination with device-to-device communications," IEEE Internet of Things J., vol. 5, no. 2, pp. 1251-1264, Apr. 2018.
[17] J. Jiang, S. Zhang, B. Li, and B. Li, "Maximized cellular traffic offloading via device-to-device content sharing," IEEE J. on Selected Areas in Communications, vol. 34, no. 1, pp. 82-91, Jan. 2015.
[18] D. Zhai, et al., "Joint user pairing, mode selection, and power control for D2D-capable cellular networks enhanced by nonorthogonal multiple access," IEEE Internet of Things J., vol. 6, no. 5, pp. 8919-8932, Oct. 2019.
[19] N. Sawyer and D. B. Smith, "A nash stable cross-layer coalitional game for resource utilization in device-to-device communications," IEEE Trans. on Vehicular Technology, vol. 67, no. 9, pp. 8608-8622, Sept. 2018.
[20] N. Sawyer and D. B. Smith, "Flexible resource allocation in device-to-device communications using Stackelberg game theory," IEEE Trans. on Communications, vol. 67, no. 1, pp. 653-667, Jan. 2018.
[21] Y. Li and A. S. Morse, "The power allocation game on a network: a paradox," IEEE/CAA J. of Automatica Sinica, vol. 5, no. 4, pp. 771-776, Jul. 2018.
[22] T. Fang, D. Wu, J. Chen, and D. Liu, "Cooperative task offloading and content delivery for heterogeneous demands: a matching game-theoretic approach," IEEE Trans. on Cognitive Communications and Networking, vol. 8, no. 2, pp. 1092-1103, Jun. 2022.
[23] T. Fang, D. Wu, J. Chen, C. Yue, and M. Wang, "Joint distributed cache and power control in haptic communications: a potential game approach," IEEE Internet of Things J., vol. 8, no. 18, pp. 14418-14430, 15 Sept. 2021.
[24] J. Zhang and J. Wang, "Deep adversarial reinforcement learning based incentive mechanism for content delivery in D2D-enabled mobile networks," Neurocomputing, vol. 544, Article ID:126258, Aug. 2023.
[25] B. Wang, Y. Sun, S. Li, and Q. Cao, "Hierarchical matching with peer effect for low-latency and high-reliable caching in social IoT," IEEE Internet of Things J., vol. 6, no. 1, pp. 1193-1209, Feb. 2018.
[26] D. Wu, L. Zhou, Y. Cai, H. C. Chao, and Y. Qian, "Physical-social-aware D2D content sharing networks: a provider-demander matching game," IEEE Trans. on Vehicular Technology, vol. 67, no. 8, pp. 7538-7549, Aug. 2018.
[27] S. A. Kazmi, et al., "Mode selection and resource allocation in device-to-device communications: a matching game approach," IEEE Trans. on Mobile Computing, vol. 16, no. 11, pp. 3126-3141, Nov. 2017.
[28] D. Wu, L. Zhou, and P. Lu, "Win-win-driven D2D content sharing," IEEE Internet of Things J., vol. 8, no. 9, pp. 7346-7359, 1 May 2021.
[29] L. Wang and H. Wu, "Fast pairing of device-to-device link underlay for spectrum sharing with cellular users," IEEE Communications Letters, vol. 18, no. 10, pp. 1803-1806, Oct. 2014.
[30] L. Wang, H. Wu, Y. Ding, W. Chen, and H. V. Poor, "Hypergraph-based wireless distributed storage optimization for cellular D2D underlays," IEEE J. on Selected Areas in Communications, vol. 34, no. 10, pp. 2650-2666, Oct. 2016.
[31] D. Wu, L. Zhou, and Y. Cai, "Social-aware rate based content sharing mode selection for D2D content sharing scenarios," IEEE Trans. on Multimedia, vol. 19, no. 11, pp. 2571-2582, Nov. 2017.
[32] D. Fudenberg and J. Tirole, Game Theory, MIT Press Books, vol. 1, 1991.
[33] D. Monderer and L. S. Shapley, "Potential games," Games and Economic Behavior, vol. 14, no. 1, pp. 124-143, May 1996.
[34] J. Nash, "Non-cooperative games," Annals of Mathematics, vol. 54, no.2 pp. 286-295, Sept. 1951.
[35] D. López-Pérez, et al., "A survey on 5G radio access network energy efficiency: massive MIMO, lean carrier design, sleep modes, and machine learning," IEEE Communications Surveys & Tutorials, vol. 24, no. 1, pp. 653-697, First Quarter 2022.
[36] H. Holtkamp, G. Auer, S. Bazzi, and H. Haas, "Minimizing base station power consumption," IEEE J. on Selected Areas in Communications, vol. 32, no. 2, pp. 297-306, Feb. 2013.
[37] G. Auer, et al., "D2.3: energy efficiency analysis of the reference systems, areas of improvements and target breakdown," Earth, vol. 20, 68 pp., 2010.
[38] J. Huang, et al., "A close examination of performance and power characteristics of 4G LTE networks," in Proc. of the 10th Int. Conf. on Mobile systems, Applications, and Services, pp. 225-238, Low Wood Bay, UK, 25-29 Jun. 2012.
[39] M. Höyhtyä, O. Apilo, and M. Lasanen, "Review of latest advances in 3GPP standardization: D2D communication in 5G systems and its energy consumption models," Future Internet, vol. 10, no. 1, Article ID: 3, 18 pp., Jan. 2018.