اشتراک محتوا با استفاده از ارتباطات D2D بر روی شبکه 5G
الموضوعات :میثم کارگر سفیددشتی 1 , مرضیه ورپشتی 2 , لیلا صمیمی دهکردی 3
1 - گروه مهندسی کامپیوتر، دانشکده فنی و مهندسی، دانشگاه شهرکرد، شهرکرد، ایران
2 - گروه مهندسی کامپیوتر، دانشکده فنی و مهندسی، دانشگاه شهرکرد، شهرکرد، ایران
3 - گروه مهندسی کامپیوتر، دانشکده فنی و مهندسی، دانشگاه شهرکرد، شهرکرد، ایران
الکلمات المفتاحية: ارتباط D2D, بازی پتانسیل, ذخیره سازی در لبه, شبکه 5G,
ملخص المقالة :
توسعه سریع سختافزار هوشمند و اینترنت اشیا و همچنین ظهور برنامههای کاربردی متنوع، منجر به افزایش بیسابقه ترافیک داده موبایل شده و بنابراین باید کارایی استفاده از منابع شبکه و پهنای باند به طور مؤثری بهبود یابد. در حال حاضر فناوری ارتباطی دستگاه به دستگاه (D2D) با فراهمکردن ارتباط مستقیم تجهیزات ارتباطی میتواند ابزار مؤثری برای تکمیل شبکههای G5 ارائه دهد که نتیجه استفاده از آن کاهش بار روی شبکه G5 و افزایش کیفیت خدمات است. در این زمینه یکی از مسائل اصلی، نحوه مدیریت منابع ارتباطی و انتخاب پیوندهای ارتباطی است. ما در این مقاله مسئله چگونگی مدیریت لینکهای ارتباطی D2D برای انتقال محتوا بین تجهیزات ارتباطی را بررسی و آن را به صورت یک مسئله بهینهسازی خطی دودویی مدل میکنیم. برای حل این مسئله روشی بر اساس نظریه بازی پیشنهاد میکنیم که در آن با در نظر گرفتن تجهیزات کاربر حاوی فایلهای مورد نظر برای انتقال به عنوان بازیکن، یک بازی پتانسیل دقیق طراحی و سپس برای رسیدن به نقطه تعادل نش یک الگوریتم یادگیری توزیعشده پیشنهاد میگردد. نتایج شبیهسازی کارایی مناسب الگوریتم پیشنهادی را تأیید میکنند.
[1] Y. Liu, M. Peng, G. Shou, Y. Chen, and S. Chen, "Toward edge intelligence: multiaccess edge computing for 5G and Internet of Things," IEEE Internet of Things J., vol. 7, no. 8, pp. 6722-6747, Aug. 2020.
[2] X. Sun and N. Ansari, "Latency aware workload offloading in the cloudlet network," IEEE Communications Letters, vol. 21, no. 7, pp. 1481-1484, Jul. 2017.
[3] Z. Hu, Z. Zheng, T. Wang, L. Song, and X. Li, "Caching as a service: small-cell caching mechanism design for service providers," IEEE Trans. on Wireless Communications, vol. 15, no. 10, pp. 6992-7004, Oct. 2016.
[4] D. Liu and C. Yang, "Caching at base stations with heterogeneous user demands and spatial locality," IEEE Trans. on Communications, vol. 67, no. 2, pp. 1554-1569, Feb. 2019. [5] M. Reiss-Mirzaei, M. Ghobaei-Arani, and L. Esmaeili, "A review on the edge caching mechanisms in the mobile edge computing: a social-aware perspective," Internet of Things, vol. 22, Article ID: 100690, Jul. 2023.
[6] M. Waqas, et al., "A comprehensive survey on mobility-aware D2D communications: principles, practice and challenges," IEEE Communications Surveys & Tutorials, vol. 22, no. 3, pp. 1863-1886, Third Quarter 2019.
[7] J. Yao, T. Han, and N. Ansari, "On mobile edge caching," IEEE Communications Surveys & Tutorials, vol. 21, no. 3, pp. 2525-2553, Third Quarter 2019.
[8] U. N. Kar and D. K. Sanyal, "An overview of device-to-device communication in cellular networks," ICT Express, vol. 4, no. 4, pp. 203-208, Dec. 2018.
[9] S. Jayakumar, "A review on resource allocation techniques in D2D communication for 5G and B5G technology," Peer-to-Peer Networking and Applications, vol. 14, pp. 243-269, 2021.
[10] R. Rathi and N. Gupta, "Game theoretic and non-game theoretic resource allocation approaches for D2D communication," Ain Shams Engineering J., vol. 12, no. 2, pp. 2385-2393, Jun. 2021.
[11] K. Pandey and R. Arya, "Lyapunov optimization machine learning resource allocation approach for uplink underlaid D2D communication in 5G networks," IET Communications, vol. 16, no. 5, pp. 476-484, Mar. 2022.
[12] M. H. Zafar, I. Khan, and M. O. Alassafi, "An efficient resource optimization scheme for D2D communication," Digital Communications and Networks, vol. 8, no. 6, pp. 1122-1129, Dec. 2022.
[13] I. Ioannou, V. Vassiliou, C. Christophorou, and A. Pitsillides, "Distributed artificial intelligence solution for D2D communication in 5G networks," IEEE Systems J., vol. 14, no. 3, pp. 4232-4241, Sept. 2020.
[14] W. Jiang, et al., "Joint computation offloading and resource allocation for D2D-assisted mobile edge computing," IEEE Trans. on Services Computing, vol. 16, no. 3, pp. 1949-1963, May/Jun. 2022.
[15] L. L. H. Xing, J. Xu, and A. Nallanathan, "Joint task assignment and resource allocation for D2D-enabled mobile-edge computing," IEEE Trans. on Communications, vol. 67, no. 6, pp. 4193-4207, Jun. 2019.
[16] W. Song, Y. Zhao, and W. Zhuang, "Stable device pairing for collaborative data dissemination with device-to-device communications," IEEE Internet of Things J., vol. 5, no. 2, pp. 1251-1264, Apr. 2018.
[17] J. Jiang, S. Zhang, B. Li, and B. Li, "Maximized cellular traffic offloading via device-to-device content sharing," IEEE J. on Selected Areas in Communications, vol. 34, no. 1, pp. 82-91, Jan. 2015.
[18] D. Zhai, et al., "Joint user pairing, mode selection, and power control for D2D-capable cellular networks enhanced by nonorthogonal multiple access," IEEE Internet of Things J., vol. 6, no. 5, pp. 8919-8932, Oct. 2019.
[19] N. Sawyer and D. B. Smith, "A nash stable cross-layer coalitional game for resource utilization in device-to-device communications," IEEE Trans. on Vehicular Technology, vol. 67, no. 9, pp. 8608-8622, Sept. 2018.
[20] N. Sawyer and D. B. Smith, "Flexible resource allocation in device-to-device communications using Stackelberg game theory," IEEE Trans. on Communications, vol. 67, no. 1, pp. 653-667, Jan. 2018.
[21] Y. Li and A. S. Morse, "The power allocation game on a network: a paradox," IEEE/CAA J. of Automatica Sinica, vol. 5, no. 4, pp. 771-776, Jul. 2018.
[22] T. Fang, D. Wu, J. Chen, and D. Liu, "Cooperative task offloading and content delivery for heterogeneous demands: a matching game-theoretic approach," IEEE Trans. on Cognitive Communications and Networking, vol. 8, no. 2, pp. 1092-1103, Jun. 2022.
[23] T. Fang, D. Wu, J. Chen, C. Yue, and M. Wang, "Joint distributed cache and power control in haptic communications: a potential game approach," IEEE Internet of Things J., vol. 8, no. 18, pp. 14418-14430, 15 Sept. 2021.
[24] J. Zhang and J. Wang, "Deep adversarial reinforcement learning based incentive mechanism for content delivery in D2D-enabled mobile networks," Neurocomputing, vol. 544, Article ID:126258, Aug. 2023.
[25] B. Wang, Y. Sun, S. Li, and Q. Cao, "Hierarchical matching with peer effect for low-latency and high-reliable caching in social IoT," IEEE Internet of Things J., vol. 6, no. 1, pp. 1193-1209, Feb. 2018.
[26] D. Wu, L. Zhou, Y. Cai, H. C. Chao, and Y. Qian, "Physical-social-aware D2D content sharing networks: a provider-demander matching game," IEEE Trans. on Vehicular Technology, vol. 67, no. 8, pp. 7538-7549, Aug. 2018.
[27] S. A. Kazmi, et al., "Mode selection and resource allocation in device-to-device communications: a matching game approach," IEEE Trans. on Mobile Computing, vol. 16, no. 11, pp. 3126-3141, Nov. 2017.
[28] D. Wu, L. Zhou, and P. Lu, "Win-win-driven D2D content sharing," IEEE Internet of Things J., vol. 8, no. 9, pp. 7346-7359, 1 May 2021.
[29] L. Wang and H. Wu, "Fast pairing of device-to-device link underlay for spectrum sharing with cellular users," IEEE Communications Letters, vol. 18, no. 10, pp. 1803-1806, Oct. 2014.
[30] L. Wang, H. Wu, Y. Ding, W. Chen, and H. V. Poor, "Hypergraph-based wireless distributed storage optimization for cellular D2D underlays," IEEE J. on Selected Areas in Communications, vol. 34, no. 10, pp. 2650-2666, Oct. 2016.
[31] D. Wu, L. Zhou, and Y. Cai, "Social-aware rate based content sharing mode selection for D2D content sharing scenarios," IEEE Trans. on Multimedia, vol. 19, no. 11, pp. 2571-2582, Nov. 2017.
[32] D. Fudenberg and J. Tirole, Game Theory, MIT Press Books, vol. 1, 1991.
[33] D. Monderer and L. S. Shapley, "Potential games," Games and Economic Behavior, vol. 14, no. 1, pp. 124-143, May 1996.
[34] J. Nash, "Non-cooperative games," Annals of Mathematics, vol. 54, no.2 pp. 286-295, Sept. 1951.
[35] D. López-Pérez, et al., "A survey on 5G radio access network energy efficiency: massive MIMO, lean carrier design, sleep modes, and machine learning," IEEE Communications Surveys & Tutorials, vol. 24, no. 1, pp. 653-697, First Quarter 2022.
[36] H. Holtkamp, G. Auer, S. Bazzi, and H. Haas, "Minimizing base station power consumption," IEEE J. on Selected Areas in Communications, vol. 32, no. 2, pp. 297-306, Feb. 2013.
[37] G. Auer, et al., "D2.3: energy efficiency analysis of the reference systems, areas of improvements and target breakdown," Earth, vol. 20, 68 pp., 2010.
[38] J. Huang, et al., "A close examination of performance and power characteristics of 4G LTE networks," in Proc. of the 10th Int. Conf. on Mobile systems, Applications, and Services, pp. 225-238, Low Wood Bay, UK, 25-29 Jun. 2012.
[39] M. Höyhtyä, O. Apilo, and M. Lasanen, "Review of latest advances in 3GPP standardization: D2D communication in 5G systems and its energy consumption models," Future Internet, vol. 10, no. 1, Article ID: 3, 18 pp., Jan. 2018.