-
Subject Areas :
1 - Yazd University
Keywords: -,
Abstract :
-
1. Yu L, Shearer C, Shapter J. Recent development of carbon nanotube transparent conductive films, Chem. Rev., 116, 13413-13453, 2016.
2. Kumar S., Rani R., Dilbaghi N., Tankeshwar K., Kim KH., Carbon nanotubes: a novel material for multifaceted applications in human healthcare, Chem. Soc. Rev., 46, 158-196, 2017.
3. Gholizadeh S., Moztarzadeh F., Haghighipour N., Ghazizadeh L., Baghbani F., Shokrgozar MA., Allahyari Z., Preparation and characterization of novel functionalized multiwalled carbon nanotubes/chitosan/β-Glycerophosphate scaffolds for bone tissue engineering, Int. J. Biol. Macromolec., 97, 365-372, 2016.
4. Newman P., Minett A., Ellis-Behnke R., Zreiqat H., Carbon nanotubes: their potential and pitfalls for bone tissue regeneration and engineering Nanomed Nanotech Biol Med, 9, 1139-1158, 2013.
5. Lalwani G., Patel SC., Sitharaman B., Two-and three-dimensional all-carbon nanomaterial assemblies for tissue engineering and regenerative medicine, Ann Biomed Eng,44, 2020-2035, 2016.
6. Wu Z., Chen Z., Du X., Logan JM., Sippel J., Nikolou M., Kamaras K., Reynolds JR., Tanner DB., Hebard AF., and Rinzler AG., Transparent, conductive carbon nanotube films, Science, 305, 1273-1276, 2004.
7. Nayak TR., Jian L., Phua LC., Ho HK., Ren Y., Pastorin G., Thin films of functionalized multiwalled carbon nanotubes as suitable scaffold materials for stem cells proliferation and bone formation. ACS. Nano, 4, 7717-7725, 2010.
8. Khang D, Sato M., Price RL., Ribbe AE., Webster TJ., Selective adhesion and mineral deposition by osteoblasts on carbon nanofiber patterns, Int. J. Nanomed., 1, 65-72, 2006.
9. Stout DA., and Webster TJ., Carbon nanotubes for stem cell control, Mater. Today, 15, 312-318, 2012.
10. Elias KL., Price RL., Webster TJ., Enhanced functions of osteoblasts on nanometer diameter carbon fibers, Biomaterials, 23, 3279-3287, 2002.
11. Li X., Gao H., Uo M., Sato Y., Akasaka T., Abe S., Feng Q., Cui F., Watari F., Maturation of osteoblast-like SaoS2 induced by carbon nanotubes, Biomed. Mater., 4, 2008.
12. Tutak W., Chhowalla M., Sesti F., The chemical and physical characteristics of single-walled carbon nanotube film impact on osteoblastic cell response, Nanotechnology, 21, 315102, 2010.
13. Liu D., Yi C., Zhang D., Zhang J., Yang M., Inhibition of proliferation and differentiation of mesenchymal stem cells by carboxylated carbon nanotubes, ACS Nano, 4, 2185-2195, 2010.
14. Zanello LP., Zhao B., Hu H., Haddon RC., Bone cell proliferation on carbon nanotubes, Nano Lett., 6, 562-567, 2006.
15. Price RL., Waid MC., Haberstroh KM., Webster TJ., Selective bone cell adhesion on formulations containing carbon nanofibers, Biomaterials, 24, 1877-1887, 2003.
16. Mattioli-Belmonte M., Vozzi G., Whulanza Y., Seggiani M., Fantauzzi V., Orsini G., Ahluwalia A., Tuning polycaprolactone–carbon nanotube composites for bone tissue engineering scaffolds, Mater. Sci. Eng., C, 32, 152-159, 2012.
17. Nisbet DR., Forsythe JS., Shen W., Finkelstein DI., Horne MK., Review paper: a review of the cellular response on electrospun nanofibers for tissue engineering, J. Biomater. Appl, 24, 7-29, 2009.
18. Kumar S., Rani R., Dilbaghi N., Tankeshwar K., Kim KH., Carbon nanotubes: a novel material for multifaceted applications in human healthcare, Chem. Soc. Rev., 46, 158-196, 2017.
19. Ng R., Zang R., Yang KK., Liu N., Yang ST., Three-dimensional fibrous scaffolds with microstructures and nanotextures for tissue engineering, Rsc. Advances., 2, 10110-10124, 2012.
20. Han Z., Tay B., Tan C., Shakerzadeh M., Ostrikov K., Electrowetting control of Cassie-to-Wenzel transitions in superhydrophobic carbon nanotube-based nanocomposites, ACS Nano, 3, 3031-3036, 2009.
21. Lalwani G., Kwaczala AT., Kanakia S., Patel SC., Judex S., Sitharaman B., Fabrication and characterization of three-dimensional macroscopic all-carbon scaffolds, Carbon, 53,90-100, 2013.
22. Patel SC., Alam O., Zhang D., Grover K, Qin YX., Sitharaman B, Layer-by-layer, ultrasonic spray assembled 2D and 3D chemically crosslinked carbon nanotubes and grapheme, J MATER RES, 32, 370-382, 2016.
23. Tait JG., Worfolk BJ., Maloney SA., Hauger TC., Elias AL., Buriak JM., Harris KD., Spray coated high-conductivity PEDOT: PSS transparent electrodes for stretchable and mechanically-robust organic solar cells, Sol. Energ. Mat. Sol. Cells, 110, 98-106, 2013.
24. Shi X., Hudson JL., Spicer PP., Tour JM., Krishnamoorti R., Mikos AG. , Injectable nanocomposites of single-walled carbon nanotubes and biodegradable polymers for bone tissue engineering, Biomacromolecules, 7, 2237-2242, 2006.
25. Lin C., Wang Y., Lai Y., Yang W., Jiao F., Zhang H., Ye S., Zhang Q., Incorporation of carboxylation multiwalled carbon nanotubes into biodegradable poly(lactic-co-glycolic acid) for bone tissue engineering, Colloids Surf., B, 83, 367-375, 2011.
26. Da Silva EE., Della Colleta HH., Ferlauto AS., Moreira RL., Resende RR., Oliveira S., Kitten GT., Lacerda RG., Ladeira LO., Nanostructured 3-D collagen/nanotube biocomposites for future bone regeneration scaffolds, Nano Res., 2, 462-473, 2010.
27. 46. Hirata E., Uo M., Takita H., Akasaka T., Watari F., Yokoyama A., Multiwalled carbon nanotube-coating of 3D collagen scaffolds for bone tissue engineering, Carbon, 49, 3284-3291, 2011.
28. Wang SF., Shen L., Zhang WD., Tong YJ., Preparation and mechanical properties of chitosan/ carbon nanotubes composites, Biomacromolecules, 6, 3067-3072, 2005.
29. Depan D., Misra RD., Processing–structure– functional property relationship in organic–inorganic nanostructured scaffolds for bone-tissue engineering: The response of preosteoblasts, J. Biomed. Mater. Res., Part A, 100, 3080-3091, 2012.
30. Shin SR., Bae H., Cha JM., Mun JY., Chen YC., Tekin H., Shin H., Farshchi S, Dokmeci MR., Tang S., Khademhosseini A., Carbon nanotube reinforced hybrid microgels as scaffold materials for cell encapsulation, ACS Nano, 6, 362-372, 2012.