ارزیابی دیرین¬بوم¬شناسی گرافوگلپتیدهای نهشته¬های فلیش ائوسن، باختر
محورهای موضوعی :نصراله عباسی 1 , حامد یاراحمدزهی 2 , سارا نخجیری 3 , علی جلالی 4 , حمید حافظی مقدس 5
1 - دانشگاه زنجان
2 - گروه زمین شناسی و مرکز تحقیقات علوم زمین, دانشکده علوم,دانشگاه آزاد اسلامی واحد زاهدان
3 - دانشگاه آزاد اسلامی واحد زاهدان
4 - دانشگاه آزاد اسلامی واحد علوم و تحقیقات تهران
5 - گروه زمین شناسی، دانشکده علوم دانشگاه فردوسی مشهد
کلید واژه: اثر فسیل# دیرین بومشناسی# رسوبگذاری رخدادی# فلیش# خاش#,
چکیده مقاله :
رخنمونهای گسترده ای از نهشته های توربیدایتی در منطقه خاش واقع در جنوب خاوری ایران در دسترس هستند. این رسوبات از توالی چرخه ای مارن، شیل، سیلتسنگ و ماسهسنگ تشکیل شده اند که در طی جریان رسوبگذاری رخدادی تهنشست شده اند. اثر فسیلهای گرافوگلپتید فراوان از این نهشته ها جمع آوری و مورد شناسایی قرار گرفتند که شامل 17 اثرجنس هستند. این گرافوگلپتیدها در دو دسته پیش از رخداد رسوبی (توربیدایتی) و پس از رخداد قابل تفکیک هستند. اثر فسیل های پیش از رخداد رسوبی متنوع و در بسترهای گلی ایجاد شده اند و شامل Desmograpton، Helminthorhaphe، Paleodytion، Protopaleodictyon، Scolicia، Spirophycus، Spirorhaphe، Squamodictyon و Urohelminthoida میباشند. اثر فسیل-های پس از رخداد رسوبی در درون لایه های دانه درشت تر سیلت و ماسه سنگ باقی ماندهاند و بهطور نسبی از فراوانی اندکی برخوردارند و شامل Helicodromites ، Helminthopsis، ،Nereites،Paleomeandron ، Phycosiphon و Planolites هستند. برخی از اثر فسیل ها چون Paleodictyon متاثر از جریانات بستر در هنگام تشکیل نیز بوده و در جهت جریان آرایش یافته اند. به نظر میرسد بسترهای گلی پیش از رخداد توربیدایتی محل مناسبی برای اثرسازهای با منش زیستی K و بسترها پس از رخداد رسوبی مناسب فعالیت اثرسازهای درون رسوبی با منش زیستی R بوده است. چنین تحلیلهای ساختاری اثرفسیل و ارتباط آنها با شرایط محیط رسوبی در تفسیر محیط رسوبی و شرایط تشکیل نهشتههای توربیدایتی اهمیت دارد.
Extensive outcrops of Eocene flysch deposits are available in the Khash area, south-east Iran. These flysches comprise sedimentary cycles of marl, shale, siltstone, and sandstone with erosional structures such as groove and flute casts. The studied sediments are deposited as a result of event-sedimentation. Diverse graphoglytids have been collected from an outcrop of these sediments, located 15 Km west of Khash. Seventeen ichnogenera have been determined among the studied deposits. Most of these trace fossils were formed in the pre-event sedimentation phase on the muddy substrates, and they include Desmograpton, Helminthorhaphe, Paleodytion, Protopaleodictyon, Scolicia, Spirophycus, Spirorhaphe, Squamodictyon, Urohelminthoida. Post-event trace fossils are low in ichnodiversity and form in the sandy or silty substrates, they consists of Halopoa, Helicodromites, Helminthopsis, Nereites, Paleomeandron, Phycosiphon, and Planolites. Some of the trace fossils such as Paleodictyon are aligned with respect to the paleocurrent directions, and were affected by the currents. It seems that fine-grained pre-event sediment surfaces was favorite for K-strategist, while post-event sediments were occupied by R-strategist trace-makers.
Baucon, A., 2010. Leonardo da Vinci, the founding father of ichnology: Palaios, v. 25, no. 6, p. 361-367.
-Biabangard, H. and Moradian, A., 2008. Geology and geochemical evaluation of Taftan Volcano, Sistan and Baluchestan Province, southeast of Iran: Chinese Journal of Geochemistry, v. 27, no. 4, p. 356.
-Bottjer, D. J., 2016. Paleoecology: Past, Present and Future, John Wiley & Sons.
-Brenchley, P. J., Brenchley, P. and Harper, D., 1998, Palaeoecology: Ecosystems, environments and evolution, CRC Press.
-Campbell, S. G., Botterill, S. E., Gingras, M. K., and MacEachern, J. A. 2016. Event sedimentation, deposition rate, and paleoenvironment using crowded Rosselia assemblages of the Bluesky Formation, Alberta, Canada: Journal of Sedimentary Research, v. 86, no. 4, p. 380-393.
-Crimes, T. and McCall, G., 1995. A diverse ichnofauna from Eocene‐Miocene rocks of the Makran Range (SE Iran): Ichnos: An International Journal of Plant & Animal, v. 3, no. 4, p. 231-258.
-Crimes, T. P., 1975. The production and preservation of trilobite resting and furrowing traces: Lethaia, v. 8, no. 1, p. 35-48.
-Crimes, T. P. and Fedonkin, M. A., 1994. Evolution and dispersal of deepsea traces: Palaios, p. 74-83.
-Delavari, M. and Shakeri, A., 2016. Taftan volcanic rocks: implication for adakitic magmatism of Makran magmatic arc: Quaternary Journal of Iran, v. 2, no. 5, p. 1-14.
-Droser, M. L. and Bottjer, D. J., 1989. Ichnofabric of sandstones deposited in high-energy nearshore environments: measurement and utilization: Palaios, p. 604-598.
-Ducassou, E., Migeon, S., Mulder, T., Murat, A., Capotondi, L., Bernasconi, S. M. and Mascle, J., 2009. Evolution of the Nile deep‐sea turbidite system during the Late Quaternary: influence of climate change on fan sedimentation: Sedimentology, v. 56, no. 7, p. 2061-2090.
-Ekdale, A., 1980. Graphoglyptid burrows in modern deep-sea sediment: Science, v. 207, no. 4428, p. 304-306.
-Fuchs, T., 1895. Studien iiber Fukoiden und Hieroglyphen: Denkschr. Math. Naturwiss. K1. Akad. Wiss.
-Fürsich, F. T., Taheri, J. and Wilmsen, M., 2007. New occurrences of the trace fossil Paleodictyon in shallow marine environments: examples from the Triassic–Jurassic of Iran: Palaios, v. 22, no. 4, p. 408-416.
-Gansser, A., 1971. The Taftan Volcano (SE Iran) Eclogae, Geol, Helve., v. 64, p. 319-334.
-Hajmolla Ali, A. B., 1984. Geological map of Khash: Geological Survey of Iran.
-Häntzschel, W., 1975a. Trace fossils and problematica, in Moore, R. C., ed., Treatise on invertebrate paleontology. Part W, Volume 269, Geological Socciety of America and University of Kansas, p. W269.
-Häntzschel, W., 1975b. Treatise on Invertebrate Paleontology, null, null p.:
-Hjulstrom, F., 1935, Studies of the morphological activity of rivers as illustrated by the river fyris, bulletin: Geological Institute Upsalsa, v. 25, p. 221-527.
-Hodgson, D. M., 2009. Distribution and origin of hybrid beds in sand-rich submarine fans of the Tanqua depocentre, Karoo Basin, South Africa: Marine and Petroleum Geology, v. 26, no. 10, p. 1940-1956.
-Kidd, R. and McCall, G.. 1985, Plate tectonics and the evolution of Makran: East Iran Project, Area, no. 1, p. 564-618.
-Ksiazkiewicz, M., 1954. Graded and laminated bedding in the Carpathian flysch: Rocznk polskiego. Towarzystwa. geologicznego, v. 22, p. 399-499.
-Leszczyński, S., 1993. A generalized model for the development of ichnocoenoses in flysch deposits: Ichnos: An International Journal of Plant & Animal, v. 2, no. 2, p. 137-146.
-Leszczyński, S. and Seilacher, A., 1991. Ichnocoenoses of a turbidite sole: Ichnos: An International Journal of Plant and Animal, v. 1, no. 4, p. 293-303.
-Lowey, G. W., 2007. Lithofacies analysis of the Dezadeash Formation (Jura–Cretaceous), Yukon, Canada: The depositional architecture of a mud/sand-rich turbidite system: Sedimentary Geology, v. 198, no. 3-4, p. 273-291.
-Martinsson, A., 1970. Toponomy of trace fossils, Trace fossils, Volume 3, Geological Journal Special, p. 323-330.
-McCall, G., 1985. Area Report East Iran Project-Area No. 1 (North Makran & South Baluchestan, Geological Survey of Iran.
-Menghini, G. G., 1850. In: Savi, P., Menghini, G.G. Osservazioni stratigrafische e paleontologische concernati la geologia della Toscana e dei paesi limitrofi., in Murchinson, R. I., ed., Memoria sulla struttura geologica delle Alpi degli Apennini e dei Carpazi: Firenze, Stemparia granucale, , p. 246-528.
-Miller, M. F. and Smail, S. E., 1997. A semiquantitative field method for evaluating bioturbation on bedding planes: Palaios, v. 12, no. 4, p. 391-396.
-Mulder, T. and Alexander, J., 2001. The physical character of subaqueous sedimentary density flows and their deposits: Sedimentology, v. 48, no. 2, p. 269-299.
-Osaro, I. L., 2018. Turbulent Suspension and Sediment Grains Transport in Natural Flows [Ph.D.: University of London, 201 p.
-Pickering, K., Clark, J., Smith, R., Hiscott, R., Lucchi, F. R. and Kenyon, N., 1995. Architectural element analysis of turbidite systems, and selected topical problems for sand-prone deep-water systems, Atlas of deep water environments, Springer, p. 1-10.
-Pickering, K. and Hiscott, R., 2015. Deep marine systems: Processes, deposits, environments, tectonic and sedimentation, John Wiley and Sons.
-Pickering, K., Stow, D., Watson, M. and Hiscott, R., 1986. Deep-water facies, processes and models: a review and classification scheme for modern and ancient sediments: Earth-Science Reviews, v. 23, no. 2, p. 75-174.
-Pickering, K. T., 2014. Atlas of deep water environments: Architectural style in turbidite systems, Springer.
-Plaziat, J.-C. and Mahmoudi, M., 1988. Trace fossils attributed to burrowing echinoids: a revision including new ichnogenus and ichnospecies: Geobios, v. 21, no. 2, p. 209-233.
-Reynolds, S., 1987. A recent turbidity current event, Hueneme Fan, California: reconstruction of flow properties: Sedimentology, v. 34, no. 1, p. 129-137.
-Rona, P., Seilacher, A., Luginsland, H., Seilacher, E., de Vargas, C., Vetriani, C., Bernhard, J., Sherrell, R., Grassle, J. and Low, S.. Paleodictyon, a living fossil on the deepsea floor, in Proceedings AGU Fall Meeting Abstracts 2003.
-Savrda, C., 1992. Trace Fossils and Benthic Oxygenation. Short Courses in Paleontology, v. 5, p. 172-196.
-Schlegel, R., Wortmann, U., Krawinkel, H., Krawinkel, J., and Winsemann, J., 1995. Architecture and facies associations of Plio-Pleistocene trench-slope deposits, Burica Peninsula, Central America, Atlas of Deep Water Environments, Springer, p. 63-66.
-Seilacher, A., 1953. Studien zur palichnologie. I. Uber die methoden der palichnologie: Neues Jahrbuch fur Geologie und Palaontologie, Abhandlungen, v. 96, p. 421-452.
--. 1962, Paleontological Studies on Turbidite Sedimentation and Erosiona: The Journal of Geology, v. 70, no. 2, p. 227-234.
-. -1964a, Biogenic sedimentary structures, in Imbrie, J., and Newell, N., eds., Approaches to paleoecology: New York, Wiley, p. 296-316.
-. -1964b, Sedimentological classification and nomenclature of trace fossils: Sedimentology, v. 3, no. 3, p. 253-256.
-Seilacher, A., 1974. Flysch trace fossils: evolution of behavioural diversity in the deep-sea: Neues Jahrbuch für Geologie und Paläontologie, Monatshefte, v. 1974, p. 233-245.
-Seilacher, A., 1977a. Evolution of trace fossil communities, Developments in Palaeontology and Stratigraphy, Volume 5, Elsevier, p. 359-376.
-Seilacher, A., 1977b. Pattern analysis of Paleodictyon and related trace fossils: Trace fossils 2., p. 289-334.
-, -1977c. Pattern analysis of Paleodictyon and related trace fossils-ln: Crimes, TP & Harper, JC (eds): Trace fossils 2-Geol: J., Spec. lssue, v. 9, p. 289-334.
-Seilacher, A., 2007. Trace fossil analysis, Springer Science & Business Media.
-Shahrabi, M., 1995. Explanatory text of the Khash Quadrangle map. 1:250000: GSI.
-Simpson, S., 1975. Classification of trace fossils, The study of trace fossils, Springer, p. 39-54.
-Smith, A. B. and Crimes, T. P., 1983. Trace fossils formed by heart urchins‐a study of Scolicia and related traces: Lethaia, v. 16, no. 1, p. 79-92.
-Stow, D. A. and Mayall, M., 2000. Deep-water sedimentary systems: new models for the 21st century: Marine and Petroleum Geology, v.17, no. 2, p. 125-135. .
-Taylor, P. D. and Wilson, M. A., 2003. Palaeoecology and evolution of marine hard substrate communities: Earth-Science Reviews, v. 62, no. 1-2, p. 1-103.
-Tirrul, R., Bell, I., Griffis, R. and Camp, V., 1983. The Sistan suture zone of eastern Iran: Geological Society of America Bulletin, v. 94, no. 1, p. 134-150.
-Uchman, A., Taxonomy and palaeoecology of flysch trace fossils: the Marnoso arenacea formation and associated facies (Miocene, Northern Apennines, Italy). Beringeria, 15:115-3, in Proceedings Annales Societatis Geologorum Poloniae 1995.
-Uchman, A., 2004. Deep-sea trace fossils controlled by palaeo-oxygenation and deposition: an example from the Lower Cretaceous dark flysch deposits of the Silesian Unit, Carpathians, Poland: Fossils and Strata, , v. 51, p. 39-57.