نهشته های میو-پلیوسن در جزیره قشم (حوضه زاگرس) و منطقه میناب (حوضه مکران)
محورهای موضوعی : چینه شناسیفرشته مهدی پور حسکوئی 1 , علی بهرامی 2 , مهدی یزدی 3
1 - گروه زمین شناسی دانشگاه اصفهان
2 - دانشگاه اصفهان
3 - استاد دانشگاه
کلید واژه: سازند میشان, آثار تافونومیک, مکران, میناب, جزیره قشم.,
چکیده مقاله :
در این پژوهش رسوبات دریایی میو-پلیوسن در دو منطقه قشم و میناب، به لحاظ شرایط دیرینه محیطی، حدود سنی و آثار تافونومی مورد مطالعه قرار گرفته اند. رخنمون های دیرستان و کندالو در جزیره قشم و دو رخنمون بمانی و سیریک در منطقه میناب (بخش بالایی سازند میشان) دارای شباهتهای رسوبی و زیستی هستند. در هر چهار رخنمون تجمع حجم عظیمی از اویسترها در رسوبات مارنی و آهکی به همراه دیگر موجودات مانند بالانوئیدها، مرجانها، بریوزوئرها، استراکودا، فرامینیفرها وغیره رخنمون دارند. حضور فرامینیفر Bolivina spathulata در نهشنه های رخنمون بمانی بیانگر سنی در حدود اواخر مسینین (اواخر میوسن) در محیط دریایی کم اکسیژن در محدوده لبه شلف و بالای اسلوپ، برای رخنمون بمانی میباشد، اما بر اساس فرامینیفرهای لایههای رخنمون سیریک، محدوده سنی آن احتمالاً متعلق به لانژین تا مسینین و قدیمیتر از لایههای رخنمون بمانی میباشند. فراوانی موجودات پوشاننده (انکراسترهایی مانند بریوزوئرها) در رخنمون دیرستان و بمانی بیانگر محیطهای دریایی کم عمق و مغذی، با انرژی کم و سرعت رسوبگذاری پایین هستند. از سوی دیگر، حضور مرجانها و اویستریدها (خصوصاً گونهHyotissa hyotis )، به همراه فرامینیفرهایی مانند Textularia agglutinans، Elphidium و میلیولیدها در رخنمون دیرستان میتواند نشان دهنده محیط شلف داخلی ویا محیط پلاتفرم کربناته مرجانی با اکسیژن بالا متصل به آبهای آزاد باشد که در محدوده سنی پس از لانژین تا پیش از عقب نشینی کامل دریا در زمان کوهزایی پاسادانین در منطقه دیرستان جزیره قشم باشد. حضور اویستریدهای با فرمهای کشیده و پوستههای ستبر، مانند گونه Crassostrea gryphoides با آثار فرسایش زیستی از نوع تریپانیتس بیانگر محیط رسوبی پرانرژی با نرخ رسوبگذاری بالا، از جمله محیطهای مصب رودخانهای تحت تأثیر جزر و مد دریا در محدوده سنی معادل با رسوبات دیرستان میباشند.
Marine deposits of Mio-Pliocene in Qeshm Island and Minab region studied in terms of depositional paleoenvironment, and taphonomic features. Direstan and Kendaloo outcrops from Qeshm Island and Bemani and Sirik outcrops from Minab region (Gushi Marl), have huge number of oyster bars, along with balanoids, corals, bryozoans, ostracoda, foraminifera, etc. Bolivina spathulata from Bemani assemblages shows a low-oxygen marine environment of the shelf edge and upper slope around the late early Messinian (late Miocene), while Sirik outcrop, shows tidal to intertidal environments of Langhian time interval. The abundance of encrusting organisms (such as bryozoans) in Direstan and Bemani outcrops indicate shallow and nutritious marine environment with low energy and low sedimentation rate. Corals and ostreids (Hyotissa hyotis) with Textularia agglutinans, Elphidium and miliolids in the Direstan outcrop, indicate the inner shelf platforms with high oxygen connected to open marine environments. In Kendaloo, Crassostrea gryphoides and ichnogenus of Trypanites, indicate a high sedimentation rate of river estuary environments under the influence of tidal and intertidal flats.
]۱[ آقانباتي، ع.، ۱۳۸۳، زمين¬شناسي ايران: سازمان زمين¬شناسي و اکتشافات معدني کشور، ۵۸۶ صفحه.
]۲[ پرست، ع.، یزدی، م.، بهرامی، ع.، ۱۳۹۹، اولین گزارش از سکانس کم عمق¬شونده میوسن پسین (سازند میشان به آغاجاری) در منطقه دیرستان جزیره قشم بر اساس حضور ماکروفسیل¬های جانوری: مجموعه مقالات سیزدهمین همايش انجمن ديرينه¬شناسي ايران، صفحه ۷–۱.
]۳[ حسنی، م.، و حسینی پور، ف.، و دریسی، م.، 1393، چینه شناسی، دیرینه¬شناسی و دیرینه بوم¬شناسی نهشته¬های تشکیل¬دهنده دره ستاره¬ها در جزیره قشم: نشریه علمی پژوهشی دیرینه¬شناسی، صفحه ۳۴–۱۹.
]۴[ حسيني پور، ف.، حسنی م. ج.، داستانپور م.، ۱۳۹۳، اويسترهاي سنگ آهک گوری (ميوسن پيشين) در شمال بندرعباس، ناحيه زاده محمود، جنوب خاوری حوضه زاگرس: نشریه علوم زمین، انتشارات سازمان زمين¬شناسي و اکتشافات معدني کشور، صفحه ۱۱۰–۱۰۱.
]۵[ قائدي، م.، يزدي، م.، جانسون، ک.، ۱۳۹۵، سيستماتيك و پالئواكولوژي مرجان هاي ميوسن منطقه ي بشاگرد در حوضه مكران: رساله دکتری رشته زمین¬شناسی چینه¬شناسی و فسیل¬شناسی، دانشگاه اصفهان، 226 صفحه.
[6] ABBOTT, R.T., 1974, American Seashells: New York, Van Nostrand Reinhold, 663.
[7] AMAO, A.O., Kaminski, M.A., Asgharian Rostami, M., Gharaie, M.H.M., Lak, R. and Frontalini, F., 2018, Distribution of benthic foraminifera along the Iranian coast: Marine Biodiversity, 49, 933-946.
[8] BEU, A.G., 1965, Ecologic variation of Chlamys dieffenbachi (Reeve) (Mollusca, Lamellibrachiata): Royal Society of New Zealand Transactions, Zoology, 7, 93-96.
[9] BRENCHLEY, P.J. and HARPER, D.A.T., 1999, Palaeoecology: Ecosystems, Environments and Evolution. Chemical Rubber Company, CRC Press, 432.
[10] BROMLEY, R.G., 1972, On some ichnotaxa in hard substrates, with a redefinition of Trypanites: Palaontologische Zeitschrift, 46,93-98.
[11] BOARDMAN, R.S., CHEETHAM, A.H. and ROWELL, A.J., 1987, Fossil Invertebrates. Blackwell Scientific Publication, 713.
[12] COX, L.R., 1936, Fossil Mollusca from southern Persia (Iran) and Bahrein Island: Memoirs of the Geological Survey of India: Palaeontologia Indica, 22, 1-67.
[13] DEBENAY, J.P., Ba, M., Ly, A., and Sy, I., 1987, Les écosystèmes paraliques du Sénégal. Description, répartition des peuplements de foraminifères benthiques: Revue de Paléobiologie, 6, 229-55.
[14] DECKKER, P., de, Chivas, A.R. and J.M.G., Shelley, 1988, Paleoenvironment of the Messinian Mediterranen 'Lago Mare' from strontium and magnesium in ostracode shells: Palaios, 3, 352-358.
[15] EL-HEDENY, M., 2007, Encrustation and bioerosion on Middle Miocene bivalve shells and echinoid skeletons: paleoenvironmental implications: Revue de Paléobiologie, 26, 381-389.
[16] GHAEDI, M., YAZDI, M., JOHNSON, K., 2016, Paleoenvironmental conditions of Early Miocene corals, western Makran, Iran: Arabian Journal of Geosciences, 9, 1-686.
[17] GIBERT, J.M., de, DOMENECH, R., MARTINELL, J., 2012, Rocky shorelines, In: KNAUST, D., BROMLEY, R.G., (Eds.) Trace Fossils as Indicators of Sedimentary Environments, Developments in Sedimentology, 64, 441‒462.
[18] GINGRAS, M.K., MACEACHERN J.A., DASHTGARD, S.E., ZONNEVELD, J.P., SCHOENGUT, J., RANGER, M.J. and PEMBERTON, S.G., 2012, Estuaries. In: KNAUST, D. and BROMLEY, R.G., (Eds.) Trace fossils as indicators of sedimentary environments, Developments in Sedimentology, 64, 463-505.
[19] HERTLEIN, L.G., 1969, Family Pectinidae Rafinesque, 1815, In: MOORE, R.C., (Eds.) Treatise on Invertebrate Paleontology, Part N, Mollusca 6 Bivalvia: Geological Society of America, Boulder, and University of Kansas Pres, Lawrence, 1, N348-N373.
[20] HUBER, H., 1977, Geological Map of Iran (scale 1:1 000 000), with explanatory notes. National Iranian Oil Company, Tehran, Iran.
[21] JIMENEZ, A.P., JUAN, C. and BRAGA, J.M.M., 1991, Oyster distribution in the upper tortonian of the Almanzora Corridor (Almeria, S.E. Spain): Geobios, 24, 725-734.
[22] JORISSEN, F.J., 1987, The distribution of benthic foraminifera in the Adriatic Sea: Marine Micropaleontology, 12, 21-49.
[23] KNAUST, D., CURRAN, H.A. and DRONOV, A.V., 2012, Shallow-marine carbonates, In: KNAUST, D. and BROMLEY, R.G., (Eds.) Trace fossils as indicators of sedimentary environments, Developments in Sedimentology, 64, 705-750.
[24] LUTZE, G.F., 1965, Zur Foraminiferen-Fauna der Ostsee: Meyniana, 15, 75-142.
[25] MACHALSKI, M., 1998, Oyster life positions and shell beds from the Upper Jurassic of Poland: Acta Palaeontologica Polonica, 43, 609–634.
[26] MCCALL, G., 1985a, Explanatory Text of the Fannuj Quadrangle Map 1:250,000, Geological Quadrangle K14. Geological Survey of Iran, Tehran.
[27] MCCALL, J., ROSEN, B. and DARREL, J., 1994, Carbonate deposition in accretionary prism settings: Early Miocene coral limestones and corals of the Makran Mountain Range in southern Iran: Facies, 31, 141–177.
[28] MCCALL, G.J., 2002, A summary of the geology of the Iranian Makran: Geological Society, London, Special Publications, 195, 147-204.
[29] MOISSETTE, P., CORNEE, J.J., MANNAI-TAYECH, B., RABHI, M., ANDRE, J.P., KOSKERIDOU, E., and MEON, H., 2010, The western edge of the Mediterranean Pelagian Platform: A Messinian mixed siliciclastic–carbonate ramp in northern Tunisia: Palaeogeography, Palaeoclimatology, Palaeoecology, 285, 85–103.
[30] MOODLEY, L., 1990, Southern North Sea seafloor and subsurface distribution of living benthic foraminifera: Netherlands Journal of Sea Research, 27, 57-71.
[31] MOORE, E.J., 1984, Tertiary marine pelecypods of California and Baja California: Propeamussiidae and Pectinidae, Geological Survey Professional Papers, 1228-B, B1-B112.
[32] MURRAY, J.W, 1973, Distribution and ecology of living benthic foraminiferids. Heinemann Educational Books, London, 274.
[33] NAIMI, M.N., VINNO, O. and CHERIF, A., 2021, Bioerosion in Ostrea lamellosa shells from the Messinian of the Tafna basin (NW Algeria): Carnets Geol., Madrid, 21, 127-135.
[34] NOURADINI, M., ASHOURI, A.R., YAZDI, M. and RAHIMINEJAD, A.H., 2019, Palaeoecology and distribution of upper Oligocene–lower Miocene foraminifera in the Qom Formation, the Bagher-Abad section, NE Isfahan, Central Iran: Carbonates and Evaporites, 34, 563-579.
[35] Peterson L.W. and Rudzinskas K.K., 1982, (Cartography): explanatory text of the Taherui quadrangle map 1:250000. Geological Survey of Iran, Tehran.
[36] Poel, H.M., van de., 1992, Foraminiferal biostratigraphy and palaeoenvironments of the Miocene-Pliocene Carboneras-Nijar Basin (SE Spain). Scripta Geology, 102, 1-32.
[37] Pujos, M., 1976, Ecologie des foraminifères benthiques et des thécamoebiens de la Gironde et du plateau continental Sud-Gascogne. Application à la connaissance du Quaternaire Terminal de la région Ouest-Gironde: Doctor's Thesis University of Bordeaux, 274.
[38] SAIDOVA K.M., 2010, Benthic foraminifer communities of the Persian Gulf: Oceanology, 50, 61–66.
[39] SAW, J.V.M., HUNTER, A.W., JOHNSON, K.G. and Abdul Rahman, A.H.B., 2018, Pliocene corals from the Togopi Formation of the Dent Peninsula, Sabah, northeastern Borneo, Malaysia. Alcheringa: An Australasian Journal of Palaeontology, 43, 291–319.
[40] SEILACHER, A., 1984, Constructional morphology of bivalves: evolutionary pathways in primary versus secondary soft-bottom dwellers. Palaeontology, 27, 207–237.
[41] STENZEL, H.B., 1971, Oysters: In: MOORE, R.C., (Eds.) 1971, Treatise on invertebrate paleontology, Part N, Mollusca 6, Bivalvia 3. Geological Society of America, Boulder, and University of Kansas Pres, Lawrence, 3, N953-N12241.
[42] TAYLOR, J.D. and WILSON, M.A., 2003, Palaeoecology and evolution of marine hard substrate communities. Earth-Science Reviews, 62, 1-103.
[43] TRUC, G., 1980, Paléoécologie des séries à evaporites: Bulletin des Centres de Recherches Exploration - Production Elf-Aquitaine, 4, 367-369.
[44] VERON, J.E.N., TURAK, E. and DEVANTIER, L.M., 2000, Family Faviidae: In: VERON, J.E.N., (Eds.) 2000, Corals of the World. Australian Institute of Marine Science, Townsville, 85-269.
[45] YONGE, C.M., 1962, On the primitive significance of the byssus in the bivalvia and its effects in evolution: Marine Biological Association of the United Kingdom Journal, 42, 113-125.
[46] ZÁGORŠEK, K., 2010, Bryozoa from the Langhian (Miocene) of the Czech Republic: Acta Musei Nationalis Pragae, (B), 66, 1-255.
[47] ZANINETTI, L., 1982, Les foraminifères des marais salants du Salin-de-Giraud (Sud de la France): milieu de vie et transport dans le salin; comparaison avec les microfaunes marines, Géologie Méditerranéenne, 9, 447-470.