اختلاط ماگمایی در گرانودیوریت¬ها و انکلاوهای مافیک ده بالا: شاهدی برای ماگماتیسم کالک-آلکالن نوع I از دو منشا پوسته زیرین و گوشته لیتوسفریک
محورهای موضوعی :زینب قرامحمدی 1 , فاطمه نجمی 2
1 - دانشگاه تهران
2 - دانشگاه فردوسی مشهد
کلید واژه: اختلاط ماگمایی انکلاو¬, های میکروگرانولار مافیک توده نفوذی ده بالا پوسته زیرین کالک¬, آلکالن.,
چکیده مقاله :
توده گرانودیوریتی ده بالا با روند شرقی - غربی در 45 کیلومتری جنوب غرب بویینزهرا، در استان قزوین برونزد دارد. این توده حاوی انکلاوهای میکروگرانولار مافیک متعدد با ترکیب دیوریت - کوارتزمونزودیوریت است. انکلاوها با اشکال گرد شده و بیضوی با اندازه های دو تا 20 سانتی متر در گرانودیوریت های میزبان پراکنده شده اند. انکلاوها عموماً تماس ناگهانی با گرانودیوریت های میزبان دارند و از مجموعه کانی های آذرین تشکیل شده اند. وجود شواهد بافتی نشاندهنده عدم تعادل از قبیل حضور پلاژیوکلازهایی با زونینگ ترکیبی و سطوح تحلیلی مکرر، سوزن های آپاتیت و کوارتزهای اوسلی در انکلاوها نشانه تغییرات شیمیایی و یا حرارتی مذاب در حین رشد بلور و شاهدی برای وقوع اختلاط ماگمایی هستند. انکلاو ها از LREES و LILES غنی شده و از HFSES تهی شده هستند. گرانودیوریت ها با محتوای 9/66-2/64= SiO2، از نوع کالک آلکالن غنی از پتاسیم بوده و مشخصات سنگ های متا آلومین (1/1>A/CNK) را نشان می دهند. غنی شدگی از عناصر ناسازگار La, Ce, Rb, Th, K وNd در کنار آنومالی منفیTi, Ba, Eu, Nb و P دلالت بر نقش پوسته زیرین در شکل گیری ماگمای سازنده گرانودیوریت ها دارد، اما محتوای نسبتاً بالای≠Mg ( 43/0- 039/0) پیشنهاد می کند که گرانودیوریت های ده بالا از اختلاط ماگمای مافیک حاصل از گوشته با ماگمای فلسیک پوسته به وجود آمده باشند. انکلاوها با مقادیر نسبتاً پایین 2/58- 8/52=SiO2، 92/0- 77/0=A/CNK، مقدار متوسط پتاسیم 8/3-4/1=K2O و مقدار نسبتاً بالای (46/0-4/0)≠Mg مشخص می شوند. بر اساس ویژگی های ژئوشیمیایی و مقادیر 8/1-6/1=Dy/Yb، به نظر می رسد ماگمای سازنده انکلاوها از ذوب بخشی گوه گوشته در زون انتقالی اسپینل- گارنت حاصل شده و در تماس با ماگماهای فلسیک حاصل از ذوب پوسته، تا حدی متحول شده باشد.
Dehe Bala granodioritic pluton with an E-W trend is exposed approximately 45 km south-west of Boein Zahra town, Qazvin province. This pluton includes several mafic microgranular enclaves (MMES) with diorite and quartz monzodiorite in composition. The ellipsoidal and rounded enclaves with 2 to 30 cm in sizes have been scattered in host granodiorites. The enclaves commonly have a sharp contact with the host granodiorites. Textural evidence indicative of disequilibrium condition, include plagioclase with oscillatory zoning and repeated resorption surfaces, acicular apatite and quartz ocelli as chemical and/or thermal changes in the melt during crystal growth and as evidence for occurrence of magma mixing. The enclaves enriched in LILES and LREES and are depleted in HFSES. The SiO2 content of the granodiorite ranges from 64.2 to 66.9 wt%. They are high-k calc-alkaline in composition, displaying a metaluminous character (A/CNK<1.1). Enrichment of incompatible elements such as La, Ce, Rb, Th, K and Nd coupled with negative anomalies of Ti, Ba, Eu, Nb and P implying the role of the lower crust in the formation of the granodioritic magma, but relatively high content of Mg value (0.39 – 0.43) suggest that the granodiorites were generated by mixing of mantle-derived mafic magma with felsic melt derived by partial melting of lower crust. The MMEs are characterized by relatively low contents of SiO2 = 52.8–58.2 wt%, moderate K2O=1.4-3.8 and high Mg (0.4 -0.46). Geochemical features and values of Dy/Yb=1.6 – 1.8 in MMES suggest that enclave magmas were derived by partial melting of the mantle wedge in the spinel–garnet transition zone and they have partially evolved in contact with fusion of crust-derived felsic magmas.
آقانباتی، س. ع.، 1383. زمینشناسی ایران. انتشارات سازمان زمینشناسی و اکتشافات معدنی کشور، 620.
اقلیمی، ب.، 1378. تهیه نقشه زمینشناسی دانسفهان (خیارج) ورق 100000/1. شماره 5961، سازمان زمینشناسی ایران، تهران.
- صفرزاده، ا.، 1386. پتروگرافی و پترولوژی توده نفوذی حاجیآباد. پایاننامه کارشناسی ارشد، دانشگاه شهید بهشتی، 132.
- طباخ شعبانی، ا. ا.، 1369. پتروگرافی و پترولوژی توده¬های نفوذی جنوب بویینزهرا. پایاننامه کارشناسی ارشد، دانشگاه خوارزمی، 175.
- نوگل سادات، ا. ا. و هوشمندزاده، ا.، 1363. تهیه نقش زمینشناسی ساوه ورق 250000/1. سازمان زمینشناسی ایران، تهران.
Agard, P., Omrani, J., Jolivet, L., Whitechurch, H., Vrielynck, B., Spak-man, W., Monié, P., Meyer, B. and Wortel, R., 2011. Zagros orogeny: a subduction-dominated process. Geological Magazine, 148, 692–725.
Alavi, M., 1994. Tectonics of the Zagros orogenic belt of Iran: new data and interpretations. Tectonophysics, 229, 211-238.
Bacon, C.R. and Druitt, T.H., 1988. Compositional evolution of the zoned calc-alkaline magma chamber of Mount Mazama, Crater Lake, Oregon. Contributions to Mineralogy and Petrology, 98, 224-256.
Barbarin, B., 1990. Plagioclase xenocrysts and mafic magmatic enclaves in some granitoids of the Sierra Nevada Batholith, California. Journal of Geophysical Research, 95, 17747–17756.
Barbarin, B., 1999. A review of the relationships between granitoid types, their origins and their geodynamic environments. Lithos, 46, 605-626.
Barbarin, B., 2005. Mafic magmatic enclaves and mafic rocks associated with some granitoids of the central Sierra Nevada batholith, California: nature, origin, and relations with the hosts. Lithos, 80, 155–177.
Barbarin, B. and Didier, J., 1991. Review of the main hypothesis proposed for the genesis and evolution of mafic microgranular enclaves. In: Didier, J., Barbarin, B. (Eds.), Enclaves and granite petrology: Developments in Petrology, 13, Elsevier, Amsterdam, 367-373.
Baxter, S. and Feely, M., 2002. Magma mixing and mingling textures in granitoids: examples from the Galway Granite, Connemara, Ireland. Mineralogy and Petrology, 76 (1–2), 63–74.
Berberian, M. and King, G.C.P., 1981. Towards a palaeogeography and tectonic evolution of Iran. Canadian Journal of Earth Sciences, 18, 210-265.
Blundy, J.D. and Sparks, R.S.J., 1992. Petrogenesis of mafic inclusions in granitoids of the Adamello Massif, Italy. Journal of Petrology, 33, 1039–1104.
Bonin B., 2007. A-type granites and related rocks: evolution of a concept, problems and prospects. Lithos, 97, 1-29.
Boynton, W.V., 1984. Geochemistry of the rare earth elements: Meteorite studies, In: Rare Earth element geochemistry (Ed. Henderson, P.), Elsevier, Amsterdam, 63-114.
Broska, L., Williams, C.T., Uher, P., Konesny, P. and Leichmann, J., 2004. The geochemistry of phosphorus in different granite suites of the western Carpathians, Slovakia: the role of apatite and p-bearing feldspar. Chemical Geology, 205, 1-15.
Bussy, F. and Ayrton, S., 1990. Quartz textures in dioritic rocks of hybrid origin. Schweizerische mineralogische und petrographische Mitteilungen, 70, 223–235.
Caillat, C., Dehlavi, P. and Martel Jatin, B., 1978. Geologie de la region de Saveh (Iran), contribution a letude du volcanisme et plutonisme tertiaire de la zone del Iran centeral. Phd thesis, De specialist, University of Grenoble, France.
Castro, A., 2013. The off-crust origin of granite batholiths. Geoscience Frontiers, 5, 63-75.
Chappell, B.W. and White, A.J.R., 1974. Two contrasting granite types. Pacific Geology, 8, 173-174.
Chappell, B.W. and White, A.J.R., 1992. I-type and S-type granites in the Lachlan fold belt. Transactions of the Royal Society of Edinburgh Earth sciences, 83, 1-26.
Chappell, B.W. and White, A.J.R., 2011. Two contrasting granite types: 25 years later. Australian Journal of Earth Sciences, 48 , 489-500.
Chappell, B.W., White, A.J.R. and Wyborn, D., 1987. The Importance of Residual Source Material (Restite) in Granite Petrogenesis. Journal of Petrology, 28, 1111-1138.
Chen, Y.D., Price, R.C. and White, A.J.R., 1989. Inclusions in S-Type Granites from Southeastern Australia. Journal of Petrology, 30, 1181-1218.
Chen, B., Chen, Z.C. and Jahn, B.M., 2009. Origin of mafic enclaves from the Taihang Mesozoic orogen, north China craton. Lithos, 110, 343–358.
Clarke, B.D., 1992. Granitoid Rocks. Chapman and Hall Publisher, London, 283. Clemens, J.D., Darbyshire, D.P.F. and Flinders, J., 2009. Sources of post-orogenic calcalkaline magmas: The Arrochar and Garabal Hill–GlenFyne complexes, Scotland. Lithos, 112, 524-542.
Clemens, J.D. and Stevens G., 2012. What controls chemical variation in granitic magmas? Lithos, 134(135), 317-329.
Clemens, J.D. and Wall, V.J., 1988. Controls on the mineralogy of S-type volcanic and plutonic Rocks. Lithos, 21, 53–66.
Collins, W.J., 1996. Lachlan Fold Belt granitoids: products of three-component mixing. Transactions of the Royal Society of Edinburgh Earth Sciences, 87, 171–181.
Drummond, M.S. and Defant, M. J., 1990. A model for trondhjemite-tonalite-dacite genesis and crustal growth via slab melting: Archean to modern comparisons. Journal of Geophysics Research, 95, 21503–21521.
Elburg, M.A., 1996. U–Pb ages and morphologies of zircon in microgranitoid enclaves and peraluminous host granites: evidence for magmamingling. Contributions to Mineralogy and Petrology, 123, 177–189.
Farner, M.J., Lee, C.T.A. and Putirka, K.D., 2014. Mafic-felsic magma mixing limited by reactive processes: A case study of biotite-rich rinds on mafic enclaves. Earth and Planetary Science Letter, 393, 49-50.
Frost, B. R., Barnes, C. G., Collins, W. J., Arculus, R. J., Ellis, D. J. and Frost, C. D., 2001. A geochemical classification for granitic rocks. Journal of Petrology, 42, 20-33.
Frost, T.P. and Mahood, G.A., 1987. Field, chemical, and physical constraints on mafic–felsic magma interaction in the Lamarck Granodiorite, Sierra Nevada, California. Geological Society of America Bulletin, 99, 272–291.
Garcia Arias, M., Corretgé, L.G., Carlos Fernandez, C. and Castro, A., 2015.Water-present melting in the middle crust: The case of the Ollo de Sapo gneiss in the Iberian Massif (Spain). Chemical Geology, 419, 176–191.
Gamble, J.A., 1979. Some relationships between coexisting granitic and basaltic magmas and the genesis of hybrid rocks in the Tertiary Central Complex of Slieve Gullion, Northeast Ireland. Journal of Volcanology and Geothermal Research, 5, 297-316.
Green, T.H., 1995. Significance of Nb/Ta as an indicator of geochemical processes in the crust mantle system. Chemical Geology, 120, 347–359.
Griffin, W.L., Pearson, N.J., Belousova, E., Jackson, S.E., van Achterbergh, E., O'Reilly, S.Y. and Shee, S.R., 2000. The Hf isotope composition of cratonic mantle: LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites. Geochimica et Cosmochimica Acta , 64 (1), 133–147.
Griffin,W.L.,Wang, X., Jackson, S.E., Pearson, N.J., O'Reilly, S.Y., Xu, X.S. and Zhou, X.M., 2002. Zircon chemistry and magmamixing, SE China: in-situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes. Lithos, 61, 237–269.
Grogan, S.E. and Reavy, R.J., 2002. Disequilibrium textures in the Leinster Granite Complex, SE Ireland: evidence for acid-acid magma mixing. Mineralogical Magazine , 66 (6), 929–939.
Grove, D.C. and Sando, T.W., 1982. Origin of calc-alkaline series lavas at Medicine Lake Volcano by fractionation, assimilation and mixing. Contributions to Mineralogy and Petrology, 80, 160-182.
Hibbard, M.J., 1991. Textural anatomy of twelve magma-mixed granitoid systems. In: Didier, J., Barbarin, B. (Eds.), Enclaves and Granite Petrology, Elsevier, Amsterdam, 431–444.
Hildreth, W. and Moorbath, S., 1988. Crustal contribution to arc magmatism in the Andes of centeral Chile. Contributions to Mineralogy and Petrology, 98, 455-489.
Hofmann, A.W. and White, M., 1983. Ba, Rb and Cs in the earth,s mantle. Naturforsch, 38, 258-266.
Hou, M.L., Jiang, Y.H., Jiang, S.Y., Ling, H.F. and Zhao, K.D., 2007. Contrasting origins of lateMesozoic adakitic granitoids from the northwestern Jiaodong Peninsula, east China: implications for crustal thickening to delamination. Geological Magazine, 144, 619–631.
Jiang, Y.H., Jiang, S.Y., Ling, H.F. and Dai, B.Z., 2006. Low-degree melting of a metasomatize lithospheric mantle for the origin of Cenozoic Yulong monzogranite-porphyry, east Tibet: geochemical and Sr–Nd–Pb–Hf isotopic constraints. Earth and Planetary Science Letters, 241, 617–633.
Jiang, Y.H., Jiang, S.Y., Dai, B.Z., Liao, S.Y., Zhao, K.D. and Ling, H.F., 2009. Middle to Late Jurassic felsic andmaficmagmatismin southern Hunan Province, Southeast China: implications for a continental arc to rifting. Lithos, 107, 185–204.
Jiang, Y.H., Jin, G.D., Liao, S.Y., Zhou, Q. and Zhao, P., 2012. Petrogenesis and tectonic implications of ultrapotassic microgranitoid enclaves in Late Triassic arc granitoids, Qinling orogen, central China. International Geology Review, 54, 208–226.
Jiang, Y.H., Jia, R.Y., Liu, Z., Liao, S.Y., Zhao, P. and Zhou, Q., 2013. Origin of Middle Triassic high-K calc-alkaline granitoids and their potassic microgranular enclaves fromthe western Kunlun orogen, northwest China: a record of the closure of Paleo-Tethys. Lithos, 156(159), 13-30.
Johnston, A.D. and Wyllie P.J., 1988. Interaction of granitic and basic magmas: experimental observations on contamination processes at l0 Kbar with H2O. Contributions to Mineralogy and Petrology, 98, 352-362.
Karsli, O., Chen, B., Aydin, F. and Şen, C., 2007. Geochemical and Sr–Nd–Pb isotopic compositions of the Eocene Dölek and Sariçiçek Plutons, Eastern Turkey: Implications for magma interaction in the genesis of high-K calc-alkaline granitoids in a post-collision extensional setting. Lithos, 98, 7-96.
Kemp, A.I., Hawkesworth, C.J., Foster, G.L., Paterson, B.A., Woodhead, J.D., Hergt, J.M., Gray, C.M. and Whitehouse, M.J., 2007. Magmatic and crustal differentiation history of granitic rocks from Hf–O isotopes in zircon. Science, 315, 980–983.
Kocak, K., Zedef, V. and Kansun, G., 2011. Magma mixing/mingling in the Eocene Horoz (Nigde) granitoids, Central southern Turkey: evidence from mafic microgranular enclaves. Mineralogy and Petrolgy, 103(1-4), 149-176.
Kouchi, A. and Sunagawa, I., 1985. A model for mixing basaltic and dacitic magmas as deduced from experimental data. Contributions to Mineralogy and Petrology, 89, 17-23.
Kretz, R., 1983. Symbols for rock-forming minerals. American Mineralogist, 68, 277-279.
Kumar, S., 2010. Mafic to hybrid microgranular enclaves in the Ladakh batholith, northwestern Himalaya: implications on calc-alkaline magma chamber processes. Journal of Geological Society of India, 6, 5–25.
Kumar, S. and Pieru, T., 2010. Petrography and major element geochemistry of microgranular enclaves and Neoproterozoic granitoids of South Khasi, Meghalaya: evidence of magma mixing and alkali diffusion. Journal of Geological Society India, 76, 345–360.
Kumar, S., Pieru, T., Rino, V. and Lyngdoh, B.C., 2005. Microgranular enclaves in Neoproterozoic granitoids of South Khasi Hills, Meghalaya plateau, Northeast India: Field evidence of interacting coeval mafic and felsic magmas. Journal of Geology Society of India, 65, 629-633.
Kumar, S., Rino, V. and Pal, A.B., 2004. Field evidence of magma mixing from microgranular enclaves hosted in Palaeoproterozoic Malanjkhand granitoids, central India. Gondwana Research, 7, 539–548.
Langmuir, C.H., Vocke, R.D., Hanson, G.N. and Hart, S.R., 1978. A general mixing equation with applications to icelandic basalts. Earth and Planetary Science Letters, 37, 380–392. Lesher C.E., 1990. Decoupling of Chemical and Isotopic Exchange during Magma Mixing. Nature 344, 235-237.
Li, X. H., Li, Z.X., Li, W.X., Liu, Y., Yuan, C., Wei, G.J. and Qi, C.S., 2007. U-Pb zircon, geochemical and Sr-Nd-Hf isotopic constraints on age and origin of Jurassic I and A-type granites from central Guangdong, SE China: a major igneous event in response to foundering of a subducted flat-slab?. Lithos, 96, 186-204.
Liu, Z., Jiang, Y.H., Jia, R.Y., Zhao, P. and Zhou, Q., 2013. Origin of Middle Cambrian and Late Silurian potassic granitoids from the western Kunlun orogen, northwest China: a magmatic response to the Proto-Tethys evolution. Mineralogy and Petrology, 108, 91-110.
Liu, L., Qiu, J. and Li, Z., 2013. Origin of mafic microgranular enclaves (MMEs) and their host quartz monzonites from the Muchen pluton in Zhejiang Province, Southeast China: Implications for magma mixing and crust–mantle interaction. Lithos, 160 (161), 145–163.
Loiselle, M.C. and Wones, D.R., 1979. Characteristics and origin of anorogenic granites, In: Annual Meetings of the Geological Society of America and Associated Societies, San Diego, California, 468.
Maniar, P.D. and Piccoli, P. M., 1989. Tectonic discrimination of granitoids. Geology Society of American Bulletin, 101, 635-643.
Martin, H., Smithies, R.H., Rapp, R., Moyen, J.F. and Champion, D., 2005. An overview of adakite, tonalite–trondhjemite–granodiorite (TTG), and sanukitoid: relationships and some implications for crustal evolution. Lithos, 79, 1–24.
Morata, D., Oliva, C., Cruz, R.D.l. and Suarez, M., 2005. The Bandurrias gabbro: Late Oligocene alkaline magmatism in the Patagonian Cordillera. Journal of South American Earth Sciences, 18, 147–162.
Patiño Douce, A. E., 1999. What do experiments tell us about the relative contributions of crust and mantle to the origin of granitic magmas? In: Castro, A., Fernández, C. and Vigneresse, J.L., (Eds.), Understanding Granites: Integrating New and Classical Techniques. Geological Society of London, Special Publications, 168, 55-75.
Patiňo Douce, A.E. and Johnston, A.D., 1991. Phase equilibria and melt productivity in the pelitic system: implications for the origin of peraluminous granitoids and aluminous granulites. Contributions to Mineralogy and Petrology, 107, 202–218.
Perugini, D., Poli, G., Christofides, G. and Eleftheriadis, G., 2003. Magma mixing in the Sithonia plutonic complex, Greece: evidence from mafic microgranular enclaves. Mineralogy and Petrology, 78, 173-200.
Rapp, R.P. and Watson, E.B., 1995. Dehydration melting of metabasalt at 8–32 kbar: implications for continental growth and crust–mantle recycling. Journal of Petrology, 36, 891-931.
Roberts, M.P. and Clemens, J.D., 1993. Origin of high-potassium, calc-alkaline, I-type Granitoids. Geology, 21, 825–828.
Rudnick, R.L. and Fountain, D.M., 1995. Nature and composition of the continental crust: a lower crustal perspective. Reviews of Geophysics, 33, 267-309.
Sawka, W.N., 1988. REE and trace element variations in accessory minerals and hornblende from the strongly zoned McMurry Meadows pluton,California. Transactions of the Royal Society of Edinburgh, 79, 157-168.
Shellnutt, J.G., Jahn, B.M. and Dostal, J., 2010. Elemental and Sr\Nd isotope geochemistry of microgranular enclaves from peralkaline A-type granitic plutons of the Emeishan large igneous province, SW China. Lithos, 119 (1–2), 34–46.
Silva, M.M.V.G., Neiva, A.M.R. and Whitehouse, M.J., 2000. Geochemistry of enclaves and host granites from the Nelas area, Central Portugal. Lithos, 50, 153–170.
Sisson, T.W., Ratajeski, K., Hankins, W.B. and Glazner, A.F., 2005. Voluminous graniticmagmas from common basaltic sources. Contributions to Mineralogy and Petrology, 148, 635–661.
Sun, S.S. and McDonough, W. F., 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geological Society, London, Special Publications, 42, 313-345.
Ventura, G., Del Gaudio, P. and Iezzi, G., 2006. Enclaves provide new insights on the dynamics of magma mingling: a case study from Salina Island (Southern Tyrrhenian Sea, Italy). Earth and Planetary Science Letters, 243 (1–2), 128–140.
Vernon, R.H., 1983. Restites, xenoliths and microgranitoid enclaves in granites. Journal and Proceedings of the Royal Society of New South Wales (London), 116, 77-103.
Vernon, R.H., 1984. Microgranitoid enclaves in granites: globules of hybrid magma quenched in a plutonic environment. Nature, 309 (5967), 438–439.
Vernon, R.H., 1990. Crystallization and hybridism inmicrogranitoid enclave magmas: microstructural Evidence. Journal of Geophysical Research, 95, 17849–17859.
Vogel, T.A., Younker, L.W., Wilband, J.T. and Kampueller, E., 1984. Magma mixing: the Marsco suite, Isle of Skye, Scotland. Contributions to Mineralogy and Petrology, 87, 231- 241.
Wang, H.Z., Chen, P.R., Sun, L.Q., Ling, H.F., Zhao, Y.D. and Lan, H. F., 2015. Magma mixing and crust–mantle interaction in Southeast China during the Early Cretaceous: Evidence from the Furongshan granite porphyry and mafic microgranular enclaves. Journal of Asian Earth Sciences, 111, 72-78.
Wang, D., Zheng, J.P., Ma, Q., Griffin, W.L., Zhao, H. and Wong, J., 2013. Early Paleozoic crustal anatexis in the intraplate Wuyi-Yunkai orogen, South China. Lithos, 175–176, 124-145.
Watson, E.B., 1981. Diffusion in magmas at depth in the earth: the effects of pressure and dissolved He2O. Earth Planetary Science Letter, 52, 291-301.
White, A.J.R., Chappell, B.W. and Wyborn, D., 1999. Application of the restite model to the Deddick Granodiorite and its enclaves - a reinterpretation of the observations and data of Maas, R., Nicholls, I.A. and Legg, C., 1997. Jornal of Petrology, 40, 413-421.
Wiebe, R.A., 1973. Relation between coexisting basaltic and granitic magmas in a composite dike. American Journal of Science, 273, 130-151.
Wilson, M., 1989. Igneous Petrogenesis, Chapman and Hall, London, 466.
Wilson, M., 2007. Igneous Petrogenesis, A Global Tectonic Approach, Springer, 1–480.
Wolf, M. B. and Wyllie, P.J., 1991. Dehydration-melting of solid amphibolite at 10 kbar: Textural development, liquid interconnectivity and applications to the segregation of magmas. Mineralogy and Petrology, 44, 151-179.
Wyllie, P.J., Cox, K.G. and Biggar, G.M., 1962. The habit of apatite in synthetic systems and igneous rocks. Journal of Petrology, 3, 238–243.
Xiong, F.H., Ma, C.Q., Zhang, J.Y. and Liu, B., 2011. The origin of mafic microgranular enclaves and their host granodiorites from East Kunlun, Northern Qinghai–Tibet Plateau: implications for magma mixing during subduction of Paleo-Tethyan Lithosphere. Mineralogy and Petrology, 104, 211–224.
Zhao, K.D., Jiang, S.Y., Yang, S.Y., Dai, B. Z. and Lu, J.J., 2012. Mineral chemistry, trace elements and Sr\Nd\Hf isotope geochemistry and petrogenesis of Cailing and Furong granites and mafic enclaves from the Qitianling batholith in the Shi-Hang zone, South China. Gondwana Research, 22, 310–324.
Zhou, X.R., 1994. Hybridization in the genesis of granitoids. Earth Science Frontiers, 1 (1-2), 87-97. (in chniese with English abstract).