برهم¬کنش سیال- سنگ در اسکارن پنـاه¬کوه با استفاده از ایزوتوپ¬های پایدار کربن و اکسیژن در انواع کلسیت، غرب یزد
محورهای موضوعی :
1 - گروه زمین شناسی، دانشکده علوم، دانشگاه سیستان و بلوچستان، زاهدان
2 - گروه زمین شناسی، دانشکده علوم، دانشگاه سیستان و بلوچستان، زاهدان
کلید واژه: ایزوتوپ¬, های پایدار تراوش سیال تهی¬, شدگی ایزوتوپی اسکارن پناه¬, کوه یزد. ,
چکیده مقاله :
اسکارن های کلسیمی و منیزیمی پناه کوه در 50 کیلومتری شمال غرب شهر تفت در استان یزد واقع شده است. نفوذ استوک گرانودیوریتی پناه کوه با سن الیگومیوسن به درون سنگ های آهکی- دولومیتی سازند جمال منجر به شکل گیری اسکارن کلسیمی- منیزیمی در منطقه پناه کوه گردیده است. مقادیر δ18O در سنگ های گرانیتی و مقادیر δ18O و δ13C در انواع کلسیت ها در این مطالعه تعیین شده است. بر اساس داده های ایزوتوپی، مقادیر δ18O و δ13C در انواع کلسیت های مورد بررسی نسبت به کلسیت های رسوبی فقیرتر شده اند. این تغییرات ایزوتوپی در اسکارن پناه کوه بیشتر توسط تراوش سیالات ماگمایی به درون سنگ های کربناتی ایجاد گردیده است. تهی شدگی مقادیر δ18O و δ13C در انواع کلسیت ها در اسکارن پناه کوه توسط برهم کنش سیالات ماگمایی =11.0‰) δ18O) با سنگ های آهکی دگرسان نشده در دمای 450- -350 درجه سانتی گراد، (X(CO2 برابر 05/0 و نسبت آب به سنگ (W/R)%50- 25 قابل تفسیر است.
The Panah-Kuh calcic and magnesian skarns are located about 50km northwest of Taft City in Yazd province. Intrusion of Panah-Kuh granodiorite stock with an Oligocene-Miocene age into limestone-dolomite rocks of the Jamal Formation led to the formation of calcic and magnesian skarn in the Panah-Kuh district. Values of δ18O of the granitic rocks and δ18O and δ13C values of the calcite types were determined in this study. Based on these data, δ18O and δ13C values in the studied calcite types are lower than those of sedimentary calcites. These isotopic variations are mainly produced by infiltration of magmatic fluids into carbonate rocks in the Panah-Kuh deposit. Depletetion of the δ18O and δ13C value in the calcite types of Panah-Kuh skarn can be explained by magmatic fluids interaction (δ18O =11.0‰) that interacted with unaltered limestone rocks at 350-450oC with X(〖CO〗_2 ) = 0.05 and water/rock ratio of 25 to 50% .
آدابی، م.ح.، 1390. ژئوشیمی رسوبی، انتشارات آرین زمین، 503.
حاج ملاعلی، ا.، 1371. گزارش نقشه زمین¬شناسی خضرآباد، سازمان زمین¬شناسی و اکتشافات معدنی کشور، تهران.
زاهدی، ا.، بومری، م.، 1392. سنگ نگاری، سنگ زایی و ژئوشیمی اسکارن پناهکوه، غرب یزد، مجله بلورشناسی و کانی شناسی ایران.
زاهدی، ا.، بومری، م.، مکی زاده، م.ع.، حسینی، م. 1391. ارزیابی پتانسیل کانه¬زایی در کانسار اسکارن پورفیری خوت با استفاده شوائد پتروگرافی و ژئوشیمیایی، غرب تفت، استان یزد، ششمین همایش ملی زمین شناسی دانشگاه پیام نور.
زاهدی، ا.، بومری، م.، مکی زاده، م.ع.، 1391. خاستگاه و تکامل سیالات سازنده کانسار خوت با استفاده از ژئوترمومتری سیالات درگیر، جنوب غرب یزد، ششمین همایش ملی زمین شناسی دانشگاه پیام نور.
شریفی، ر.، 1387. بررسی خصوصیات ژئوشیمیایی اندیسهای فلزی در منطقه پناهکوه یزد با دیدگاه اکتشافی، پایان نامه کارشناسی ارشد، دانشگاه شیراز، 218.
-Adabi, M.H., Rao, C.P. and Kitto, P.A., 1996. The source of hydrothermal fluids responsible for carbonate alteration, Renison, Tasmania, Australia: 13th Geol. Conv. Australia, (abst), 7.
-Boomeri, M., Ishiyama, D. and Mizuta, T., 2010. Matsubaya, O., Lentz, D.R., 2010. Carbon and oxygen isotopic systematics in calcite and dolomite from the Sangan Iron Skarn. Journal of Sciences, Islamic Republic of Iran, 21(3), 213-224.
-Buick, I.S. and Cartwright, I., 2000. Stable isotope constrains on the mechanism of fluid flow during contact metamorphism around the Marulan Batholith, NSW, Australia. Journal of Geochemical Exploration, 69-70, 291-295.
-Bowman, J.R. and Essene, E.J., 1984. Contact skarn formation at Elkhorn, Montana. I: P-T-component activity conditions of early skarn formation. American Journal of Science, 284, 597-650.
-Bowman, J.R., O'Neil, J.R. and Essene, E.J., 1985. Contact skarn formation et Elkhorn, Montana, II: origin and evolution of C-O-H skarn fluids. American Journal of Science, 285, 621-660.
-Choi, S.G., Kim, S.T. and Lee, J.G., 2003. Stable isotope systematics of Ulsan Fe-W skarn deposit, Korea. Journal of Geochemical exploration, 78-79, 601-606.
-Friedman, I. and O'Neil, J.R. 1977. Compilation of stable isotopic fractionation factors of geochemical interest. U.S Geoll. Surv. Prof. Pap: 440-KK.
-Giggenbach, W.F., 1997. The origin and evolution of fluids in magmatic hydrothermal systems, In: Barnes, H.L. (Ed.), Geochemistry of Hydrothermal Ore Deposits, 3rd edition. John Wiley and Sons, New York, 737-796.
-Gerdes, M.L. and Valley, J.W., 1994. Fluid flow and mass transport at the Valentine wollastonite deposit, Adirondact Mountains, New York State. Journal of Metamorphic Geology, 12, 589-608.
-Holness, M.B., 1997. Fluid flow paths and mechanism of fluid infiltration in carbonates during contact metamorphism: the Beinn an Dubhaich aureole, Skye. Journal of Metamorphic Geology, 15, 59-70.
-Kita, I. and Matsubaya, O., 1983. F2 technique for the oxygen isotopic analysis of silica minerals. Rep. Res. Inst. Nat resour. Min. coll, Akita Univ, 48, 25-33.
- Kamvong, T. and Zaw, K., 2009. The origin and evolution of skarn-forming fluids from the phu Lon deposit, northern Loei Fold Belt, Thailand: Evidence from fluid inclusion and sulfur isotope studies. Journal of Asian Earth sciences, 34, 624-633.
-Layne, G.D. and Spooner, E.T.C., 1991. The JC tin skarn deposit, southern Yukon territory: I. Geology, paragenesis, and fluid inclusion microthermometry. Economic Geology, 86, 29-47.
-Meinert, L.D., Hedenquist, J.W., Satoh, H. and Matsuhisa, Y., 2003. Formation of anhydrous and hydrous skarn in Cu-Au ore deposits by magmatic fluids. Economic Geology, 98, 147-156.
-McCrea, J. M., 1950. On the isotopic chemistry of carbonates and a paleotemperature scale, Journal of Chemical Physics, 18, 849-857.
-Nabelek, P.I., Labotka, T.C., O’Neil, J.R. and Papike, J.J., 1984. Contrasting fluid/rock interaction between the Notch Peak granitic intrusion and argillites and limestone in western Utah: evidence from stable isotopes and phase assemblages. Contributions to Mineralogy and Petrology, 86, 25-34.
-O'Neil, j.R. and Taylor, H.P.Jr., 1967. The oxygen isotope and cation exchange chemistry of feldspars. American Mineralogist, 52, 1414-1437.
O'Neil, J.R., Clayton R.N. and Mayceda, T.K., 1969, Oxygen isotope fractionation in divalent metal carbonates. J. Chem. Phys., 51, 5547-5558.
-Ozturk, Y.Y., Helvac1, C. and Sat1r, M., 2008. The influence of meteoric water on skarn formation and late-stage hydrothermal alteration at the Evciler skarn occurrences, Kazdağ, NW Turkey. Ore Geology Reviews, 34, 271-284.
-Orhan, A., mutlu, H. and Fallick, A.E., 2011. Fluid infiltration effects on stable isotope systematics of the Susurluk skarn deposit, NW Turkey, Journal of Asian Earth Sciences, 40, 550-568.
Prokoph,A., Shields,G.A. and Veizer,J., 2008. Compilation and time-series analysis of a marine carbonate δ18O,δ13C, 87Sr/86Sr and δ34S database through Earth history. Earth-Science Reviews, 87, 113-133.
-Rose, A.W., Herrick, D. C. and Deines, P., 1985. An oxygen and sulfur isotope study of skarn-type magnetite deposits of the Cornwall type, southeastern Pennsylvania. Economic Geology, 80, 418-443.
-Sheppard, S.M.F., 1981. Stable isotope geochemistry of fluids. In: Rickard, D.T, Wickman, F.E. (Ed.), Chemistry and Geochemistry of Solutions at High Temperatures and Pressures, Physics and Chemistry of the Earth, 13/14, 419-445.
-Shin, D. and Lee, I., 2003. Evaluation of the volatilization and infiltration effect on the stable isotopic and mineralogical variations in the carbonate rocks adjacent to the Cretaceous Muamsa Granite, South Korea. Journal of Asian Earth Sciences, 22, 227-243.
-Shimazaki, H., Shimizu, M. and Nakano, T., 1986. Carbon and oxygen isotopes of calcites from Japanese skarn deposits. Geochem. J, 20, 297-310.
-Taylor, H.P. and O'Neil, J.R., 1977. Stable isotope studies of metasomatic Ca-Fe-Al-Si skarns and associated metamorphic and igneous rocks, Osgood Mountains, Nevada. Contributions to Mineralogy and Petrology, 63, 1-49.
-Taylor, H.P., 1974. The application of oxygen and hydrogen isotope studies to problem of hydrothermal alteration and ore deposition. Economic Geology, 69, 843-883.
-Taylor, H.P. and Sheppard, S.M.F., 1986. Igneous rocks, I. Processes of isotopic fractionation and isotope systematics. In: Valley, J.W., Taylor, H.P., O’Neil, J.R. (Eds.), Stable isotopes in high temperature geological processes. Reviews in Mineralogy, 16, 227-272.
-Taylor, H.P.Jr., 1987. Oxygen and hydrogen isotope studies of plutonic granitic rocks. Earth and Planetary Science Letters, 38, 177-210.
-Thomson, S.N. and Ring, U., 2006. Thermochronologic evaluation of post collision extension in the Anatolide orogen, western Turkey. Tectonics 25, TC3005. -Taylor, B.E. and O’Neil, J.R., 1977. Stable isotope of metasomatic Ca-Fe-Al-Si skarns and associated metamorphic and igneous rocks. Osgood Mountains, Nevada Contributions to Mineralogy and Petrology, 63, 1-49.
-Valley, J.W., 1986. Stable isotope geochemistry of metamorphic rocks. In: Valley, J.W., Taylor, H.P., O’Neil, J.R. (Eds.), Stable Isotopes in High Temperature Geological Processes. Reviews in Mineralogy, 16, 445-490.