بررسی و تحلیل الگوی فرارفت رطوبتی بارش¬های فراگیر ایران
محورهای موضوعی :یونس خسروی 1 , مهدی دوستکامیان 2 , اله مراد طاهریان 3
1 - زنجان
2 - زنجان
3 - زنجان
کلید واژه: وزش رطوبتی, مولفه مداری و نصف¬, النهاری باد, توزیع مکانی, بارش, ایران,
چکیده مقاله :
انتقال بخارآب در جو، وابستگی مستقیمی به شرایط گردش جوی دارد و با تغییرات گردش جو در طی سال میزان و مسیر انتقال رطوبت نیز تغییر می یابد. یکی از مؤلفههای گردش جوی مؤثر در وزش و انتقال رطوبت، مراکز پرفشار هستند که در صورت قرارگیری بر روی سطح آب و منابع تأمین رطوبتی می تواند موجب وزش رطوبتی در سطح گسترده ای شوند. بااینحال نقش سامانه های کمفشار و سیکلون ها در وزش و شار رطوبت اگرچه بهاندازه سامانه های پرفشار نیست، ولی نقش به سزایی نیز در انتقال و نحوه وزش رطوبتی دارند. هدف از این پژوهش، بررسی و مطالعه وزش رطوبتی بارشهای ایران می باشد. برای این منظور داده های فشار، رطوبت ویژه، مؤلفه مداری و نصفالنهاری سطوح 1000، 850، 700 و 500 هکتوپاسکال از پایگاه داده NCEP/NCAR وابسته به سازمان جو و اقیانوس شناسی ایالاتمتحده امریکا استخراج موردبررسی و تجزیهوتحلیل قرار گرفت. نتایج حاصل از این مطالعه نشان داد که وزش رطوبتی بارشهای ایران ناشی از الگوی وزش رطوبتی کمفشار دو هستهای سودان و شرق مدیترانه- پرفشار اروپا، الگوی وزش رطوبتی کمفشار چندهستهای ایران مرکزی، شرق مدیترانه و جنوب شرق عربستان، الگوی وزش رطوبتی پرفشار شمال غرب اروپا-کمفشار خلیج فارس، الگوی وزش رطوبتی پرفشار سیبری و قزاقستان- کمفشار جنوب شرق ایران و کمفشار مدیترانه بوده است. در مجموع نتایج نشان داد که دریای عرب در تراز پایین و دریای مدیترانه در تراز بالا بیشترین نقش را در وزش رطوبتی بارشهای ایران داشتهاند.
Transferring the water vapor in the atmosphere directly depend on the conditions of atmospheric circulation, amount and path of humidity changes related to the atmospheric circulation variation. one of the main factors of atmospheric circulation affecting on transferring the moisture is high pressure centers that if placed on the water surface and humidity resources causes the moisture advection in a widely area. However, the role of low pressure systems and cyclones in advection and moisture flux, although not as much as high-pressure systems, but also played a significant role in transmitting and condition of moisture advection. the aim of this study is survey the moisture advection of Iran's precipitations. in this regard, pressure data, specific humidity, u wind and v wind parameters in 500, 700, 850 and 1000 hpa from NCEP/NCAR database were extracted and analyzed. the results showed that the moisture advection of iran's precipitations is related to the moisture advection pattern of low pressure of dual-core of Sudan and east Mediterranean - Europe high pressure, moisture advection pattern of multicore low pressure of central Iran, east Mediterranean and south east of Saudi Arabian, moisture advection pattern of high-pressure of north west of Europe- low pressure of Persian gulf, moisture advection pattern of high pressure of Siberia and Kazakhstan- low pressure of south east of Iran and low pressure of Mediterranean. Overly, the results showed that Arabian Sea in low level and Mediterranean Sea in high level had an important role in moisture advection of Iran's precipitations.
1. انصاری، سپهدار (1382)، بررسی سینوپتیکی سیستم¬های سیل¬زا در حوضه¬های آبریز کهگیلویه و بویراحمد، پایان¬نامه کارشناسی ارشد، استاد راهنما: دکتر بهلول علیجانی، استاد مشاور، زین¬العابدین جعفر پور، دانشگاه تربیت معلم گروه جغرافیا، دانشگاه تربیت معلم؛
2. سبزی¬پرور، علی¬اکبر (1370)، بررسی سینوپتیکی سیستم¬های سیل¬زا در جنوب¬غرب ایران. پایان¬نامه کارشناسی ارشد. موسسه ژئوفیزیک دانشگاه تهران؛
3. شریعتمداری، زهرا (1391)، هواشناسی عمومی، چاپ اول، تهران، انتشارات پارسیا؛
4. کریمی احمدآبادی، مصطفی (1386)، تحلیل منابع رطوبت بارشهای ایران. پایان نامه دکتری، استاد راهنما: دکتر منوچهر فرج-زاده، دانشگاه تربیت مدرس، دانشکده علوم انسانی، گروه جغرافیا؛
5. علیجانی، بهلول (1391)، آب و هوای ایران، چاپ اول، تهران، انتشارات پیام نور؛
6. قائمی، هوشنگ (1386)، هواشناسی عمومی، چاپ چهارم، انتشارات سمت، تهران؛
7. لشکری، حسن (1382)، الگوی سینوپتیکی بارشهای شدید جنوب و جنوب غرب ایران. پایان¬نامه دکتری جغرافیای طبیعی، دانشگاه تربیت مدرس؛
8. Allen, M.R. and Ingram, W.J. (2002), Constraints on future changes in climate and the hydrologic cycle", Nature. No. 419. pp. 224-232;
9. Allan, R.P. Slingo, A. and Ringer, M.A. (2002), Influence of dynamics on the changes in tropical cloud radiative forcing dur-ing the 1998 El Niño, J. Climate. No. 15. pp. 1979-1986;
10. Dayan, U. and Abramski, R. (1983), Heavy rain in the Middle East related to unusual jet stream properties, Bull Amer Meteor Soc, Vol. 64, pp. 1138-1140;
11. Krichak, SO. And Alpert, P. (1998), Role of large scales moist dynamics in November 1–5, 1994, hazardous Mediterranean weather. J Geophysics Res, 103: D16, pp. 19453–19468;
12. Kumar, A., Dudhia, J., Rotunno, R., Niyogi, D. and Mohanty, U.C. (2008), Analysis of the 26 July 2005 heavy rain event over Mumbai, India using the Weather Research and Forecasting (WRF) model, Quarterly Journal of the Royal Meteorological Society, 134(636), pp.1897-1910;
13. Manabe, S. and Strickler, R.F. (1964), Thermal equilibrium of the atmosphere with a convective adjustment, J. Atmos. Sci. No. 21. pp. 361-385;
14. Trenberth, K.E. (1999), Atmospheric moisture recycling: Role of advection and local evaporation, J. Climate. No. 12. pp. 1368-1381;
15. Trenberth, K.E. et al. (2007), Observations: Surface and atmospheric climate change, inClimate Change 2007: The Physical Science Basis, Contributions of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Edited by S. Solomon et al. U. K. Cambridge: Cambridge Univ. Press;
16. Zhou, T. J. and Yu, R. C. (2005), Atmospheric Water Vapor Transport Associated with Typical Anomalous Summer Rainfall Patterns in China, Journal of Geophysical Research, Vol. 110, pp. 1-10.