بهبود سیستمهای توصیه¬گر با کمک وب معنایی
محورهای موضوعی : عمومىراحله بهشتی نژاد 1 , محمد ابراهیم سمیع 2 , علی حمزه 3
1 - مهندسی فناوری اطلاعات، دانشگاه شیراز
2 - عضو هیات علمی
3 - استاد دانشگاه
کلید واژه:
چکیده مقاله :
بشر در زندگي خود به منظور تامین مایحتاج زندگی، همواره از مشاوره و پيشنهادهای ديگران که بهصورت شفاهي و يا نوشتاري ارائه ميشوند، بهره گرفته و آنها را در تصميمگیریهای خود لحاظ مینماید. امروزه با پيشرفت فنّاوری و گسترش کسب و کار الکترونيکي در بستر وبسايت هاي اينترنتي، فصل جدیدی از زندگی دیجیتال به کمک سيستمهاي توصيهگر آغاز گردیده است. مهمترین هدف در اين سيستمها، جذب مشتريان و جلب اعتماد آن ها از طريق ارائه بهترين و مناسبترین پيشنهاد خريد محصولات، با توجه به علايق و سلايق آن ها در میان انبوهی از انتخاباتها ميباشد. در اين پژوهش سعی گردیده است، به کمک ارتباطات موجود در هستانشناسی DBpedia، اطلاعاتی در ارتباط با حوزه فیلم استخراج گردد. سپس ساختار سيستم توصيهگر طراحی و پیادهسازی شده و به کمک اطلاعات موجود برروی پایگاه داده MovieLens، عملکرد سيستم توصيهگر مورد ارزیابی قرار گرفته است. بنابر ارزیابیهای انجام شده، مدل پیشنهادی در میان سایر روش هایی که به نحوی از وب معنایی بهره می برند، از کارایی بالاتری برخوردار است.
In order to provide for the necessities of life, human beings always use the advice and suggestions of others, which are provided orally or in writing, and take them into account in their decisions. Today, with the advancement of technology and the expansion of e-business in the context of Internet websites, a new chapter of digital life has begun with the help of advisory systems. The most important goal in these systems is to attract customers and gain their trust by offering the best and most appropriate offer to buy products, according to their interests and tastes in the midst of a multitude of choices. In this research, an attempt has been made to extract information related to the field of film with the help of connections in DBpedia's ontology. Then the structure of the recommender system is designed and implemented and with the help of the information available in the MovieLens database, the performance of the recommender system is evaluated. According to the evaluations, the proposed model is more efficient among other methods that somehow use the semantic web.
