کاربرد آیروژل ها در زخم پوش ها
محورهای موضوعی : پليمرها و نانوفناوریمحمدحسین کرمی 1 , علی زمانیان 2
1 - پژوهشکده فناوری نانو و مواد پیشرفته، پژوهشگاه مواد و انرژی، کرج، ایران
2 - پژوهشکده فناوری نانو و مواد پیشرفته، پژوهشگاه مواد و انرژی، کرج، ایران
کلید واژه: آیروژل, زخم پوش, ضد باکتری, کیتوسان, کامپوزیت,
چکیده مقاله :
آیروژل ها مواد جامد سبک وزنی هستند که از مواد آلی یا معدنی یا به صورت کامپوزیت تهیه می شوند و به عنوان مواد پیشرفته برای کاربردهای مختلف مورد بررسی قرار می گیرند. استفاده از آیروژل ها، در کاربردهای روزانه به دلیل هزینه بالا و روش پیچیده تهیه آنها محدود است. روش خشک کردن آیروژل ها به خودی خود یک کار خسته کننده است که نیاز به انرژی و منابع بالایی دارد. آیروژل ها هنگامی که به عنوان کامپوزیت تهیه می شوند می توانند خواص مکانیکی را به طور هم افزایی افزایش دهند. علاوه بر این، آیروژلها را میتوان به راحتی برای آزادسازی مولکولهای فعال زیستی، مانند فاکتورهای رشد یا آنتیبیوتیکها، برای تسریع روند بهبودی طراحی کرد. با این حال، چالشهای مرتبط با استفاده از آیروژل در کاربردهای ترمیم زخم نیز وجود دارد. به عنوان مثال، تولید آیروژل ها در مقیاس بزرگ ممکن است گران باشد، که ممکن است پذیرش گسترده آنها را در محیط های بالینی محدود کند. علاوه بر این، خواص مکانیکی آیروژلها ممکن است برای همه انواع زخمها مناسب نباشد، زیرا ممکن است پشتیبانی کافی برای انواع خاصی از زخمها ارایه نکنند. به طور کلی، در حالی که آیروژلها برای کاربردهای ترمیم زخم پوش اهمیت زیادی دارند، تحقیقات بیشتری برای غلبه بر این چالشها و بهینهسازی استفاده از آنها در محیطهای بالینی مورد نیاز است. در این پژوهش، به بررسی معرفی انواع زخم پوش ها، زخم پوش های تجاری، آیروژل های پایه کیتوسان، خواص و کاربرد آیروژل ها در زخم پوش ها پرداخته می شود.
Aerogels are lightweight solid materials that are made from organic or inorganic materials, or as composites, and are being studied as advanced materials for various applications. The use of aerogels in everyday applications is limited due to their high cost and complex preparation process. Drying aerogels can be laborious, requiring significant energy and resources. When prepared as composites, aerogels can enhance mechanical properties. They can also be tailored to release bioactive molecules, such as growth factors or antibiotics, to speed up the healing process. However, there are challenges in using aerogels for wound healing. Large-scale production may be costly, limiting their use in clinical settings. Additionally, the mechanical properties of aerogels may not be suitable for all wound types. Further research is needed to overcome these challenges and optimize the use of aerogels in clinical settings. This research investigates different types of wound dressings, commercial wound dressings, chitosan-based aerogels, and the properties and applications of aerogels in wound dressings. The unique properties of aerogels, such as their high porosity, large surface area, and biocompatibility, make them ideal candidates for enhancing the wound healing process. Studies have shown that aerogels made from chitosan can improve cell adhesion, proliferation, and migration, resulting in quicker and more efficient wound closure. Furthermore, the controlled release of bioactive molecules from aerogels can further improve the healing process by reducing inflammation and promoting tissue regeneration.
1. Alipour H., Koosha M., Sarraf Shirazi M.J., and Jebali A., Modern Commercial WoundDressings and Introducing New Wound Dressings for Wound Healing: A Review, Basparesh, 6,65-80, 2017.
2. Chouhan D., Dey N., Bhardwaj N., and Mandal B.B., Emerging and Innovative Approachesfor Wound Healing and Skin Regeneration: Current Status and Advances, Biomaterials, 216,119267, 2019.
3. Yang J.A., Yeom J., Hwang B.W., Hoffman A.S., and Hahn S.K., In Situ Forming InjectableHydrogels for Regenerative Medicine, Prog. Polym. Sci., 39, 1973-1986, 2014.4. Hosseini M. and Mobedi H., Injectable in-Situ Forming Drug Delivery Systems Based onBiodegradable Polymers, Basparesh, 6, 3-12, 2016.
4. Hosseini M. and Mobedi H., Injectable in-Situ Forming Drug Delivery Systems Based on Biodegradable Polymers, Basparesh, 6, 3-12, 2016.
5. Kamoun E.A., Kenawy E.-R.S., and Chen X., A Review on Polymeric Hydrogel Membranesfor Wound Dressing Applications: PVA-Based Hydrogel Dressings, J. Am. Acad. Derm., 8, 217-233, 2017.
6. Zahedi P., Rezaeian I., RanaeiSiadat S.O., Jafari S.H., and Supaphol P., A Review on WoundDressings with an Emphasis on Electrospun Nanofibrous Polymeric Bandages, Polym. Adv.Technol., 21, 77-95, 2010.
7. Wood R., Williams R., and Hughes L., Foam Elastomer Dressing in the Management of penGranulating Wounds: Experience with 250 Patients, J. Brit. Surg., 64, 554-557, 1977.
8. Ruel-Gariepy E. and Leroux J.-C., In Situ Forming Hydrogels-Review of TemperatureSensitive Systems, Europ. J. Pharm. Biopharm., 58, 409-426, 2004.
9. Dimatteo R., Darling N.J., and Segura T., In Situ Forming Injectable Hydrogels for DrugDelivery and Wound Repair, Adv. Drug. Deliv. Rev., 127, 167-184, 2018.
10. Sharma S., Madhyastha H., Laxmi Swetha K., Maravajjala K.S., Singh A., Madhyastha R.,Nakajima Y., and Roy A., Development of an In-Situ Forming, Self-Healing Scaffold for DermalWound Healing: in-Vitro and in-Vivo Studies, Mater. Sci. Eng -C, 128, 112263, 2021.
11.Castillo L., Castro-Alpízar J.A., Lopretti M., and Vega Baudrit J., Exploration ofBioengineered Scaffolds Composed of Thermo-Responsive Polymers for Drug Delivery inWound Healing, Int. J. Mol. Sci., 22, 1408, 2021.
12.Zakerikhoob M., Abbasi S., Yousefi G., Mokhtari M., and Noorbakhsh M.S., CurcuminIncorporated Crosslinked Sodium Alginate-g-Poly(N-Isopropyl Acrylamide) Thermo-Responsive Hydrogel as an In-Situ Forming Injectable Dressing for Wound Healing: In Vitro Characterization and in Vivo Evaluation, Carbohydr. Polym., 271, 118434, 2021.
13.Corrente F., Amara H.M.A., Pacelli S., Paolicelli P., and Casadei M.A., Novel Injectable and in Situ Cross-Linkable Hydrogels of Dextran Methacrylate and Scleroglucan Derivatives: Preparation and Characterization, Carbohydr. poly., 92, 1033-1039, 2013.
14.Eke G., Mangir N., Hasirci N., MacNeil S., and Hasirci V., Development of a UV Crosslinked Biodegradable Hydrogel Containing Adipose Derived Stem Cells to Promote Vascularization for Skin Wounds and Tissue Engineering, Biomaterials, 129, 188-198, 2017.
15.Moradian A., Zandi M., Behzadnasab M., and Pezeshki-Modaress M., Synthesis Methods of in Situ Forming Injectable Hydrogels and Their Applications in Tissue Engineering: A Review, Iran. J. Polym. Sci. Technol., 33, 95-113, 2020.
16. Pratt A.B., Weber F.E., Schmoekel H.G., Müller R., and Hubbell J.A., Synthetic Extracellular Matrices for in Situ Tissue Engineering, Biotechnol. Bioeng., 86, 27-36, 2004.
17. Peng J., Zhao H., Tu C., Xu Z., Ye L., Zhao L., Gu Z., Zhao D., Zhang J., and Feng Z., In Situ Hydrogel Dressing Loaded with Heparin and Basic Fibroblast Growth Factor for Accelerating Wound Healing in Rat , Mater. Sci. Eng-C., 116, 111169, 2020.
18.Guo J., Sun W., Kim J.P., Lu X., Li Q., Lin M., Mrowczynski O., Rizk E.B., Cheng J., Qian G., and Yang J., Development of Tannin-Inspired Antimicrobial Bioadhesives, Acta Biomater., 72, 35-44, 2018.
19.Maia J., Ferreira L., Carvalho R., Ramos M.A., and Gil M.H., Synthesis and Characterization of New Injectable and Degradable Dextran-Based Hydrogels, Polymer, 46, 9604-9614, 2005.
20.Qu J., Zhao X., Liang Y., Zhang T., Ma P.X., and Guo B., Antibacterial Adhesive Injectable Hydrogels with Rapid Self-Healing, Extensibility and Compressibility as Wound Dressing for Joints Skin Wound Healing, Biomaterials, 183, 185-199, 2018.
21.Xuan H., Wu S., Fei S., Li B., Yang Y., and Yuan H., Injectable Nanofiber-Polysaccharide Self-Healing Hydrogels for Wound Healing, Mater. Sci. Eng-C., 128, 112264, 2021.
22. Karami M.H., KalaeeM.R., KhajaviR., MoradiO., ZaareiD.,Thermal degradation kinetics of epoxy resin modified with elastomeric nanoparticles. Adv. Compos. Hybrid. Mater., 5, 390-401 ,2022.
23. Karami M.H., KalaeeM.R., Mazinani S., Shakiba M., Shafiei Navid, S., Abdouss, M., Beig Mohammadi A., zhao A., Koosha M., Song Z .,Li T., Curing Kinetics Modeling of Epoxy Modified by Fully Vulcanized Elastomer Nanoparticles Using Rheometry Method, Molecules ., 27, 2870,2022.
24. Karami M.H.,Abdouss M., Kalaee M.R., MoradiO., Application of Hydrogel Nanocomposites in Biotechnology: A review study, Iran polymer technology, research and development, In Press,2023.
25.Le Thi P., Lee Y., Tran D.L., Thi T.T.H., Kang J.I., Park K.M., and Park K.D., In Situ Forming and Reactive Oxygen Species-Scavenging Gelatin Hydrogels for Enhancing Wound Healing Efficacy, Acta biomater., 103, 142-152, 2020.
26.Lih E., Lee J.S., Park K., and Park K., Rapidly Curable Chitosan-PEG Hydrogels as Tissue Adhesives for Hemostasis and Wound Healing, Acta biomater., 8, 3261-3269, 2012.
27. Sakai S. and Nakahata M., Horseradish Peroxidase Catalyzed Hydrogelation for Biomedical, Biopharmaceutical, and Biofabrication Applications, Chem. Asian. J., 12, 3098-3109, 2017.
28.Jeon E.Y., Hwang B.H., Yang Y.J., Kim B.J., Choi B.-H., Jung G.Y., and Cha H.J., Rapidly Light-Activated Surgical Protein Glue Inspired by Mussel Adhesion and Insect Structural Crosslinking, Biomaterials, 67, 11-19, 2015.
29.Liu C., Hua J., Ng P.F., and Fei B., Photochemistry of Bioinspired Dityrosine Crosslinking, J. Mater. Sci. Technol., 63, 182-191, 2021.
30.Yu J., Huang T.R., Lim Z.H., Luo R., Pasula R.R., Liao L.D., Lim S., and Chen C.H., Production of Hollow Bacterial Cellulose Microspheres Using Microfluidics to Form an Injectable Porous Scaffold for Wound Healing, Adv. healthc. mater., 5, 2983-2992, 2016.
31.Joseph S.M., Krishnamoorthy, S Paranthaman., R Moses, J.A Anandharamakrishnan, C. A., Review on Source-Specific Chemistry, Functionality, and Applications of Chitin and Chitosan. Carbohydr. Polym. Technol. Appl, 2, 100036,2021.
32.Issera W.M.J.C.,Rathnayake S.I., Abeyrathne E.D.N.S., Nam K. C., An Improved Extraction and Purification Method for Obtaining High-Quality Chitin and Chitosan from Blue Swimmer (Portunus Pelagicus) Crab Shell Waste. Food Sci. Biotechnol, 30, 1645–1655,2021.
33.Machałowski T., Wysokowski M., Tsurkan M.V., Galli R.; Schimpf C., Rafaja D., Brendler E., Viehweger C., Żółtowska-Aksamitowska S., Petrenko I.,et al. Spider Chitin: An Ultrafast Microwave-Assisted Method for Chitin Isolation from Caribena Versicolor Spider Molt Cuticle. Molecules, 24, 3736,2019.
34.Ahmad S.I., Ahmad R., Shoeb Khan, M Kant., R Shahid., S Gautam., L Hasan., G. M Hassan., M.I. Chitin and Its Derivatives: Structural Properties and Biomedical Applications. Int. J. Biol. Macromol, 164, 526–539,2020.
35.Dave U., Somanader E., Baharlouei P., Pham L., Rahman, M.A. Applications of Chitin in Medical, Environmental, and Agricultural Industries. J. Mar. Sci. Eng, 9, 1173,2021.
36. Parale V. G., Lee K., Jungn H., Nah H., Choi H., Kim T., Phadtare V. D., Park H., Facile Synthesis of Hydrophobic, Thermally Stable, and Insulative Organically Modified Silica Aerogels Using Coprecursor Method, Ceramics International,
44, 3966-3972, 2018.
37. Ma H.S., Roberts A.P., Prevost J.H., Jullien R., Scher er W.G., Mechanical Structure, Property Relationship of Aero gels, Non-crystalline Solids, 141, 127-277, 2000.
38. Yuan B., Ding S., Wang D., Wang G., Li H., Heat Insulation Properties of Silicaero-Gel/glass Fiber Composites Fabricated
by Press Forming, Materials Letters 75, 204-206, 2012.
39. Karout A., Buisson P., Perrard A., Pierre A.C., “Shaping and Mechanical Reinforcement of Silica Aerogel Biocatalysts
with Ceramic Fiber Felts, Sol-Gel Science and Technology, 36, 61-63, 2005.
40. Markevicius G., Ladj R., Niemeyer P., Budtova T., Ri gac ci A., Ambient-dried Thermal Super Insulating Monolithic
Sili ca-based Aerogels with Short Cellulosic Fiber, Materials Science, 52, 2210-2221, 2016.