تشخیص نفوذ و ناهنجاری ها با استفاده از داده کاوی و انتخاب ویژگی ها بوسیله الگوریتم PSO
محورهای موضوعی : فناوری اطلاعات و ارتباطاتفریدون رضائی 1 , محمدعلی افشار کاظمی 2 , محمد علی کرامتی 3
1 - گروه مدیریت فناوری اطلاعات، دانشگاه آزاد اسلامی واحد تهران مرکز
2 - دانشگاه آزاد اسلامی تهران مرکزی
3 - گروه مدیریت صنعتی
کلید واژه: PSO, J48, دادهکاوی, حملات سایبری, NLC-KDD,
چکیده مقاله :
امروزه با توجه به پیشرفت فناوری و توسعه استفاده از اینترنت در کسب و کارها و تغییر نوع کسب و کارها از حالت فیزیکی به مجازی و اینترنت، باعث شده است که نوع حملات و ناهنجاریهای مرتبط نیز از حالت فیزیکی به حالت مجازی تغییر کند. یعنی بجای دستبرد به یک فروشگاه یا مغازه، افراد با استفاده از حملات سایبری به سایتها و فروشگاههای مجازی نفوذ کرده و در آنها اخلال ایجاد میکنند. آشکارسازی حملات و ناهنجاریها یکی از چالشهای جدید در مسیر پیشبرد تکنولوژی تجارت الکترونیک میباشد. تشخیص ناهنجاریهای یک شبکه و فرآیند شناسایی فعالیتهای مخرب در کسب و کارهای تجارت الکترونیک با تجزیه و تحلیل رفتار ترافیک شبکه امکانپذیر است. سیستمهای دادهکاوی بطور گستردهای در سیستمهای تشخیص نفوذ (IDS) برای تشخیص ناهنجاریها استفاده میشوند. کاهش ابعاد ویژگیها نقش بسیار مهمی در تشخیص نفوذ ایفا میکند، زیرا تشخیص ناهنجاریها از ویژگیهای ترافیک شبکه با ابعاد بالا فرآیندی زمانبری است. انتخاب ویژگیهای درست و مناسب بر سرعت تجزیه و تحلیل و کار پیشنهادی تاثیر میگذارد و میتواند سرعت تشخیص را بهبود بخشد. در این مقاله با استفاده از الگوریتمهای دادهکاوی مانند بیزین، پرسپترون چندلایه، CFS، Best First، J48 و PSO، میزان دقت تشخیص ناهنجاریها و حملات به 0.996 و میزان خطای آن 0.004 رسانده شده است.
Today, considering technology development, increased use of Internet in businesses, and movement of business types from physical to virtual and internet, attacks and anomalies have also changed from physical to virtual. That is, instead of thieving a store or market, the individuals intrude the websites and virtual markets through cyberattacks and disrupt them. Detection of attacks and anomalies is one of the new challenges in promoting e-commerce technologies. Detecting anomalies of a network and the process of detecting destructive activities in e-commerce can be executed by analyzing the behavior of network traffic. Data mining systems/techniques are used extensively in intrusion detection systems (IDS) in order to detect anomalies. Reducing the size/dimensions of features plays an important role in intrusion detection since detecting anomalies, which are features of network traffic with high dimensions, is a time-consuming process. Choosing suitable and accurate features influences the speed of the proposed task/work analysis, resulting in an improved speed of detection. In this article, by using data mining algorithms such as Bayesian, Multilayer Perceptron, CFS, Best First, J48 and PSO, we were able to increase the accuracy of detecting anomalies and attacks to 0.996 and the error rate to 0.004.
