بررسی رهایش نانوحاملهای دارویی پایه کیتوسان در درمان تومورهای سرطانی
محورهای موضوعی : سامانه های پلیمری تحریک پذیرمحمدحسین کرمی 1 , مجید عبدوس 2 , ماندانا کرمی 3
1 - دانشکده شیمی، دانشگاه صنعتی امیر کبیر (پلی تکنیک تهران)
2 - دانشکده شیمی، دانشگاه صنعتی امیرکبیر ، تهران، صندوق پستی: 4413- 15875
3 - پژوهشگاه پلیمر و پتروشیمی، تهران، ایران، صندوق پستی: 112- 14975
کلید واژه:
چکیده مقاله :
سامانههای هدفمند رهایش دارو منجر به کاهش عوارض جانبی در بدن انسان میشوند و بهدلیل افزایش نفوذپذیری، امکان تجمع بهتر داروها در محل تومور سرطانی را فراهم میکنند. سرعت رهاسازی آهسته برای کاربرد رهایش دارو مناسب است، زیرا میزان آسیب به سلولهای طبیعی را کاهش میدهد و منجر به کاهش عوارض جانبی میشود. پیوند هیدروژنی در محیط بافت سالم، باعث افزایش پایداری میشود و همچنین ساخت نانوحامل دارویی به روش امولسیونی دوگانه باعث رهایش داروها بهصورت آهسته میشود. استفاده از نانوذرات بهعنوان حامل دارو نیز بهدلیل قابلیت حمل دارو به قسمتهای مختلف بدن در زمان مناسب، بسیار مهم است. استفاده از سامانههای دارورسانی بر پایه نانوذرات بارگذاری شده با عوامل ضدسرطان، روشی موثر برای هدفگذاری سلولهای سرطانی است. این سامانهها با قابلیت نفوذ بهتر در داخل سلولها، دارو را به صورت هدفمند در سلولها ترکیب میکنند. همچنین، بهدلیل افزایش نفوذپذیری (EPR)، امکان تجمع بهتر داروها در محل تومور فراهم میشود. در سامانههای دارورسانی، افزایش رهایش در محیط سرطانی نسبت به سامانههای فیزیولوژیکی بهعنوان مزیت برای کاهش سمیت بر روی بافت سالم در نظر گرفته میشود. در این پژوهش برای اولین بار، پروفایل رهایش نانوحاملهای دارویی حاوی داروهای ضدسرطان بررسی شده است
Chitosan has been widely used as a natural biopolymer. The modification of chitosan for various applications can be easily achieved due to the abundant active groups (NH2 and OH) in the main chain. Controlled drug release makes the drug release rate predictable and repeatable for prolonged release drugs. Drug delivery systems prepared from nanoparticles show several advantages, including improved efficiency and reduced toxicity. Using drug delivery systems based on nanoparticles loaded with anti-cancer agents is an effective method for targeting cancer cells. These systems, with the ability to penetrate better inside the cells, combine the drug in a targeted way in the cells. Also, due to the enhanced permeability and retention (EPR), the possibility of better accumulation of drugs in the tumor site is provided. In most researches, the suitable particle size for the targeted release of drug nanocarriers has been reported to be less than 300 or 200 nm. This amount is suitable for the application of drug release for diffusion among tissues and causes the effect of increasing permeability. In this study, for the first time, it examines and analyzes the particle size and zeta potential (surface charge) of chitosan-based nanocarriers through dynamic light scattering and electron microscope tests in improving the release of the antitumor drug, 5-fluorouracil.
