کنترل هوشمند غیرخطی مرتبه کسری برای اینورترهای فتوولتائیک
محورهای موضوعی : مهندسی برق و کامپیوترهادی دلاوری 1 , سارا ارجمندپور 2
1 - دانشکده مهندسی برق و کامپیوتر، دانشگاه صنعتی همدان
2 - دانشکده مهندسی برق و کامپیوتر، دانشگاه صنعتی همدان
کلید واژه: تخمینگر شبکه عصبی, ردیابی نقطه حداکثر توان, رؤیتگر اغتشاش, کنترل مد لغزشی مرتبه کسری, کنترل فازی,
چکیده مقاله :
در زمان حاضر با رشد چشمگیر مصرف انرژی، افزایش گازهای گلخانهای و آلایندههای محیطی، انرژیهای تجدیدپذیر بیشتر مورد توجه و اقبال عمومی قرار گرفتهاند. این انرژیها شامل انرژی بادی، انرژی فتوولتائیک و ... میشوند. از برتریهای انرژی فتوولتائیک میتوان به گستردگی و دسترسی ساده، کمک به حفظ محیط زیست، تطبیقپذیری با شبکههای قدرت توزیعشده، کمصدابودن، راهاندازی سریع و ... اشاره کرد. یکی از مهمترین چالشها در مواجهه با سیستمهای فتوولتائیک، تغییر شرایط اقلیمی (تغییرات دما، تابش و ...) و تغییر پارامترهای سیستم است که بر عملکرد سیستم تأثیر میگذارند. در این مقاله برای رفع این مشکلات و همچنین بهمنظور ردیابی نقطه حداکثر توان در یک سیستم خورشیدی، یک کنترلکننده مد لغزشی مرتبه کسری فازی مبتنی بر رؤیتگر اغتشاش و تخمینگر نامعینی با استفاده از شبکه عصبی طراحی شده است. شبکه عصبی برای تخمین نامعینیهای سیستم، بلوک فازی برای تخمین ضریب تابع علامت در قانون کنترل، حسابان کسری برای کاهش چترینگ و رؤیتگر اغتشاش برای تقریب اغتشاشات سیستم استفاده شدهاند. همچنین پایداری روش کنترلی پیشنهادی با استفاده از روش لیاپانوف به اثبات رسیده است. نتایج شبیهسازی نیز کارایی روش پیشنهادی را تأیید میکنند و عملکرد رضایتبخشی را نشان میدهند.
At present, with the significant growth of energy consumption, increase of greenhouse gases and environmental pollutants, more attention is directed toward renewable energies. Renewable energies include geothermal, wind, photovoltaic energy and etc. Among the advantages of photovoltaic energy, its wide range and easy access, helping to preserve the environment, compatibility with distributed power networks, low noise, quick installation and lower cost compared to other energies can be noted. Important challenges facing photovoltaic systems are changing climatic conditions and parameters variation that affect the performance of the system. In this paper, to track the maximum power point in a photovoltaic system, a fuzzy fractional order sliding mode controller based on disturbance observer and uncertainty estimator using neural network is designed. The sliding mode control is used to reduce chattering, neural network to estimate the system uncertainties, fuzzy system to estimate the coefficient of the signum function in the control law and disturbance observer to approximate the disturbances in the system. Also, the stability of the system has been proven using the Lyapunov method. The simulation results of the photovoltaic system confirm the effectiveness of the proposed method and shows satisfactory performance.
[1] M. M. Farag, et al., "An optimized fractional nonlinear synergic controller for maximum power point tracking of photovoltaic array under abrupt irradiance change," IEEE J. of Photovoltaics, vol. 13, no. 2, pp. 305-314, Mar. 2023.
[2] ح. ایجادی و ا. حاجیزاده، "ردیابی حداکثر توان در سیستم تولید توان خورشیدی بر پایه تقریبگر فازی تابع ولتاژ نقطه کار با شدت تابش،" هوش محاسباتی در مهندسی برق، جلد 3، شماره 2، صص. 86-73، شهریور 1391.
[3] م. صوفی و ع. حاتمی، "ارائه روش جدید کنترلی مبتنی بر مد لغزشی برای ردیابی نقطه حداکثر توان تولیدی مولدهای فتوولتائیک،" هوش محاسباتی در مهندسی برق، جلد 10، شماره 4، صص. 14-1، دی 1398.
[4] J. Ahmed and Z. Salam, "An improved perturb and observe (P&O) maximum power point tracking (MPPT) algorithm for higher efficiency," Applied Energy, vol. 150, pp. 97-108, 15 Jul. 2015.
[5] F. Liu, S. Duan, F. Liu, B. Liu, and Y. Kang, "A variable step size INC MPPT method for PV systems," IEEE Trans. on Industrial Electronics, vol. 55, no. 7, pp. 2622-2628, Jul. 2008.
[6] H. Delavari and M. Zolfi, "Maximum power point tracking in photovoltaic systems using indirect adaptive fuzzy robust controller," Soft Computing, vol. 25, no. 16, pp. 10969-10985, Aug. 2011.
[7] س. عظیمی سردری، ب. میرزاییان دهکردی و م. نیرومندی، "ارائه روش هدایت افزایشی با گام تطبیقی بر مبنای کنترلکننده عاطفی در دنبالکنندههای بیشینه توان سلولهای خورشیدی،" نشریه مهندسی برق و مهندسی کامپيوتر ايران، الف- مهندسی برق، جلد 15، شماره 2، صص. 120-114، تابستان 1396.
[8] R. Ebead, B. Abo-Zalam, and E. Nabil, "System identification of photovoltaic system based on fractional-order model," J. Comput. Electron., vol. 22, pp. 471-484, 2023.
[9] P. Shah and S. Agashe, "Review of fractional PID controller, Mechatronics," Mechatronics, vol. 38, pp. 29-41, Sept. 2016.
[10] S. Tang, et al., "An enhanced MPPT method combining fractional-order and fuzzy logic control," IEEE J. of Photovoltaics, vol. 7, no. 2, pp. 640-650, Mar. 2017.
[11] B. Yang, T. Yu, et al., "Perturbation observer based fractional-order sliding-mode controller for MPPT of grid-connected PV inverters: design and real-time implementation," Control Engineering Practice, vol. 79, pp. 105-125, Oct. 2018.
[12] J. E. Slotine and W. Li, Applied Nonlinear Control, Englewood Cliffs NJ: Prentice Hall, 1991.
[13] ﻫ. دلاوری و م. محدثزاده، "کنترل آشوب در سیستم انتقال چرخدنده با استفاده از روش کنترل مود لغزشی ترمینال تطبیقی جدید با عامل غیرخطی در ورودی کنترلی،" مجله کنترل، جلد 10، شماره 4، صص. 53-45، زمستان ۱۳۹۵.
[14] S. Das, Kindergarten of Fractional Calculus, Cambridge Scholars Publishing, 2020.
[15] H. Delavari and S. Naderian, "Backstepping fractional terminal sliding mode voltage control of an islanded microgrid," in Proc. 5th Int. Conf. on Control, Instrumentation, and Automation, ICCIA'17, pp. 167-172, Shiraz, Iran, 21-23 Nov. 2017.
[16] ﻫ. دلاوری و ز. رشیدنژاد حیدری، "طراحی کنترلکننده مد لغزشی ترمینال تطبیقی مرتبه کسری برای ردیابی نقطه حداکثر توان در یک سلول خورشیدی تحت شرایط عادی و شرایط سایه جزئی،" سامانههای غیرخطی در مهندسی برق، جلد 5، شماره 2، صص. 22-4، پاییز و زمستان ۱۳۹۷.
[17] H. Delavari and S. Naderian, "Design and HIL implementation of a new robust fractional sliding mode control of microgrids," IET Gener. Transm. Distrib., vol. 14, no. 26, pp. 6690-6702, Dec. 2020.
[18] C. Yuan, J. Xia, F. Huang, P. Zhao, and L. Kong, "A novel hermite interpolation-based MPPT technique for photovoltaic systems under partial shading conditions," IEEE Photonics J., vol. 16, no. 2, Article ID: 8400110, 10 pp., Apr. 2024.
[19] G. A. Ghazi, et al., "Dandelion optimizer-based reinforcement learning techniques for MPPT of grid-connected photovoltaic systems," IEEE Access, vol. 12, pp. 42932-42948, 2024.
[20] R. Liv, Y. Zhu, and Y. Yang, "Robust design of perturb & observe maximum power point tracking for photovoltaic systems," IEEE Trans. on Industry Applications, vol. 60, no. 4, pp. 6547-6558, Jul./Aug. 2024.
[21] O. Gül and N. Tan, "Application of fractional-order voltage controller in building-integrated photovoltaic and wind turbine system," Measurement and Control, vol. 52, no. 7-8, pp. 1145-1158, Sept./Oct. 2019.
[22] M. Samadi and S. M. Rakhtala, "Reducing cost and size in photovoltaic systems using three-level boost converter based on fuzzy logic controller," Iran J. Sci. Technol. Trans. Electr. Eng., vol. 43, pp. 313-323, 2019.
[23] O. Saleem, S. Ali, and J. Iqbal, "Robust MPPT control of stand-alone photovoltaic systems via adaptive self-adjusting fractional order PID controller," Energies, vol. 16, no. 13, Article ID: 5039, 20 pp., 2023.
[24] M. Samadi, S. M. Rakhtala, and M. Ahmadian Alashti, "Boost converter topologies, hybrid boost and new topologies of voltage multiplier in photovoltaic systems," J. of Solar Energy Research, vol. 4, no. 4, pp. 287-299, Autumn 2019.
[25] A. Messai, A. Mellit, A. Guessoum, and S. A. Kalogirou, "Maximum power point tracking using a GA optimized fuzzy logic controller and its FPGA implementation," Solar Energy, vol. 85, no. 2, pp. 265-277, Feb. 2011
. [26] Y. Zhu and J. Fei, "Disturbance observer based fuzzy sliding mode control of PV grid connected inverter," IEEE Access, vol. 6, pp. 21202-21211, 2018.
[27] E. Kandemir, N. S. Cetin, and S. Borekci, "A comprehensive overview of maximum power extraction methods for PV systems," Renewable and Sustainable Energy Reviews, vol. 78, pp. 93-112, Oct. 2017.
[28] M. Al-Dhaifallah, A. M. Nassef, H. Rezk, and K. S. Nisar, "Optimal parameter design of fractional order control based INC-MPPT for PV system," Solar Energy, vol. 159, pp. 650-664, Jan. 2018.
[29] G. Li and H. A. Wang, "A novel stand-alone PV generation system based on variable step size INC MPPT and SVPWM control," in Proc. IEEE 6th Int. Power Electronics and Motion Control Conf., pp. 2155-2160, Wuhan, China, 17-20 May 2009.
[30] L. Dong and S. K. Nguang, Consensus Tracking of Multi-Agent Systems with Switching Topologies, Elsevier Science, Academic Press, 2020.
[31] L. Bouselham, M. Hajji, B. Hajji, and H. Bouali, "A new MPPT-based ANN for photovoltaic system under partial shading conditions," Energy Procedia, vol. 111, pp. 924-933, Mar. 2017.
[32] M. Ding, L. Wang, and R. Bi, "An ANN-based approach for forecasting the power output of photovoltaic system," Procedia Environmental Sciences, vol. 11, pt. C, pp. 1308-1315, 2011.
[33] Y. Zhu and J. Fei, "Adaptive global fast terminal sliding mode control of grid-connected photovoltaic system using fuzzy neural network approach," IEEE Access, vol. 5, pp. 9476-9484, 2017.