مروری بر پیشرفتهای اخیر غشاهای مورد استفاده برای نانوصافش (NF) در حذف فلزات سنگین از پساب
محورهای موضوعی : پليمرها و نانوفناوریفرزاد مهرجو 1 , محمدصابر باغخانی پور 2 , امیر علم 3
1 - تهران، دانشگاه علم و صنعت، مرکز پژوهش و فناوری علم و توسعه
2 - مركز پژوهش و فناوري
3 - تهران، دانشگاه علم و صنعت، مرکز پژوهش و فناوری علم و توسعه
کلید واژه: غشاء, نانوصافش, فلزات سنگین, حذف, پساب,
چکیده مقاله :
وجود یونهای فلزات سنگین در پساب های آلوده تهدیدی جدی برای سلامت انسان بوده و دفع صحیح آن ها از اهمیت بالایی برخوردار است. استفاده از غشاهای نانوصافش (Nanofiltration) به دلیل عملکرد کارآمد، طراحی سازگار و مقرون به صرفه بودن، به عنوان یکی از مؤثرترین روشهای حذف یون فلزات سنگین از پساب مطرح شده است. غشاهای نانوصافش (NF) ایجادشده از مواد پیشرفته به دلیل توانایی آن ها در آلودگی پساب در شرایط مختلف به طور فزاینده ای محبوب شده اند. ثابت شده است که ویژگیهای غشای نانوصافش (NF) برای حذف کارآمد یونهای فلزات سنگین از پساب، روشهای پلیمرشدن سطحی و پیوند، همراه با افزودن پرکنندههای نانو، مؤثرترین روشهای اصلاح هستند. این پژوهش مروری بر فرایندهای اصلاح و عملکرد غشای نانوصافش (NF) برای حذف فلزات سنگین از پساب و همچنین بررسی کاربرد این غشاها برای تصفیه پساب یون فلزات سنگین است. بازده تصفیه بسیار بالا، مانند 90/99 %، با استفاده از غشاهای متشکل از پلی وینیلآمین (Polyvinyl Amine) و گلوتارآلدئید (Glutaraldehyde) برای حذف کروم سه ظرفیتی از پساب به دست آمده است. با این حال، غشاهای نانوصافش (NF) دارای معایب خاصی از جمله رسوب غشا هستند که تمیز کردن مکرر غشا بر طول عمر آن تأثیر می گذارد.
The presence of heavy metal ions in polluted wastewater represents a serious threat to human health, making proper disposal extremely important. The utilization of nanofiltration (NF) membranes has emerged as one of the most effective methods of heavy metal ion removal from wastewater due to their efficient operation, adaptable design, and affordability. NF membranes created from advanced materials are becoming increasingly popular due to their ability to depollute wastewater in a variety of circumstances. Tailoring the NF membrane’s properties to efficiently remove heavy metal ions from wastewater, interfacial polymerization, and grafting techniques, along with the addition of nano-fillers, have proven to be the most effective modification methods. This paper presents a review of the modification processes and NF membrane performances for the removal of heavy metals from wastewater, as well as the application of these membranes for heavy metal ion wastewater treatment. Very high treatment efficiencies, such as 99.90%, have been achieved using membranes composed of polyvinyl amine (PVAM) and glutaraldehyde (GA) for Cr3+ removal from wastewater. However, nanofiltration membranes have certain drawbacks, such as fouling of the NF However, nanofiltration membranes have certain drawbacks, such as fouling of the NF membrane. Repeated cleaning of the membrane influences its lifetime. membrane. Repeated cleaning of the membrane influences its lifetime.
1. Imdad S., Dohare R.K., A Critical Review on Heavy Metals Removal Using Ionic Liquid Membranes from the Industrial Wastewater, Chemical Engineering and Processing-Process Intensification, 173, 108812, 2022.
2. Frazzoli C., Ruggieri F., Battistini B., Orisakwe O.E., Igbo J.K., Bocca B. E-WASTE Threatens Health: The Scientific Solution Adopts the One Health Strategy, Environmental Research, 212, 113227, 2022.
3. NTPA 001., Valori Limita de Incarcare Cu Poluanti a Apelor Uzate Industriale Si Orasenesti Evacuate in Receptori Naturali, |Molecula H2O, 2023.
4. Altaf M., Yamin N., Muhammad G., Raza M.A., Shahid M., Ashraf R.S., Electroanalytical Techniques for the Remediation of Heavy Metals from Wastewater, In Water Pollution and Remediation: Heavy Metals, Springer: Cham, Switzerland, 53, 471–511, 2021.
5. Benassi L., Zanoletti A., Depero L.E., Bontempi E., Sewage Sludge Ash Recovery as Valuable Raw Material for Chemical Stabilization of Leachable Heavy Metals, Journal of Environmental Management, 245, 464–470, 2019.
6. Nekouei R.K., Pahlevani F., Assefi M., Maroufi S., Sahajwalla V., Selective Isolation of Heavy Metals from Spent Electronic Waste Solution by Macroporous Ion-Exchange Resins, Journal of Hazardous Materials, 371, 389–396, 2019.
7. Adeola, A.O., Nomngongo, P.N., Advanced Polymeric Nanocomposites for Water Treatment Applications: A Holistic Perspective, Polymers, 14, 2462, 2022.
8. Charcosset C., Ultrafiltration, Microfiltration, Nanofiltration and Reverse Osmosis in Integrated Membrane Processes, In Integrated Membrane Systems and Processes, 1st ed., Basile, A., Charcosset C., Eds., John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 1–22, 2016.
9. Cao L., Zhang Y., Ni L., Feng X., A Novel Loosely Structured Nanofiltration Membrane Bioreactor for Wastewater Treatment: Process Performance and Membrane Fouling, Journal of Membrane Science, 644, 120128, 2022.
10. Ma Z., Ren L.F., Ying D., Jia J., Shao J., Sustainable Electrospray Polymerization Fabrication of Thin-Film Composite Polyamide Nanofiltration Membranes for Heavy Metal Removal, Desalination, 539, 115952, 2022.
11. Lofrano G., Carotenuto M., Libralato, G., Domingos R.F., Markus A., Dini L., Gautam R.K., Baldantoni D., Rossi M., Sharma S.K., Polymer Functionalized Nanocomposites for Metals Removal from Water and Wastewater: An Overview, Water Research, 92, 22–37, 2016.
12. Ma X., Zhao S., Tian Z., Duan G., Pan H., Yue Y., Li S., Jian S., Yang W., Liu K., MOFs Meet Wood: Reusable Magnetic Hydrophilic Composites Toward Efficient Water Treatment with Super-High Dye Adsorption Capacity at High Dye Concentration, Chemical Engineering Journal, 446, 136851, 2022.
13. Jian S., Chen Y., Shi F., Liu Y., Jiang W., Hu J., Han X., Jiang S., Yang W., Template-Free Synthesis of Magnetic La-Mn-Fe Tri-Metal Oxide Nanofibers for Efficient Fluoride Remediation: Kinetics, Isotherms, Thermodynamics and Reusability, Polymers, 14, 5417, 2022.
14. Wang J., Sun Y., Zhao X., Chen L., Peng S., Ma C., Duan G., Liu Z., Wang H., Yuan Y., A Poly (Amidoxime)-Modified MOF Microporous Membrane for High-Efficient Uranium Extraction from Seawater, e-Polymers, 22, 399–410, 2022.
15. Ma X., Zhao S., Tian Z., Duan G., Pan H., Yue Y., Li S., Jian S., Yang W., Liu K., MOFs Meet Wood: Reusable Magnetic Hydrophilic Composites Toward Efficient Water Treatment with Super-High Dye Adsorption Capacity at High Dye Concentration, Chemical Engineering Journal, 446, 136851, 2022.
16. Jian S., Chen Y., Shi F., Liu Y., Jiang W., Hu J., Han X., Jiang S., Yang W., Template-Free Synthesis of Magnetic La-Mn-Fe Tri-Metal Oxide Nanofibers for Efficient Fluoride Remediation: Kinetics, Isotherms, Thermodynamics and Reusability, Polymers, 14, 5417, 2022.
17. Wang J., Sun Y., Zhao X., Chen L., Peng S., Ma C., Duan, G., Liu Z., Wang H., Yuan, Y., A Poly (Amidoxime)-Modified MOF Microporous Membrane for High-Efficient Uranium Extraction from Seawater, e-Polymers, 22, 399–410, 2022.
18. Singh R., Introduction to Membrane Technology. In Membrane Technology and Engineering for Water Purification: Application, Systems Design and Operation, 2nd ed., Butterworth-Heinemann: Colorado Springs, CO, USA, 1–80, 2015.
19. Linder C., Kedem O., History of Nanofiltration Membranes from 1960 to 1990. In Nanofiltration: Principles, Applications, and New Materials, 2nd ed., Schäefer, A.I., Fane, A.G., Eds., WILEY-VCH GmbH: Weinheim, Germany, Chapter 1, 1–34, 2021.
20. Zhu J., Yuan S., Wang J., Zhang Y., Tian M., Van der Bruggen B., Microporous Organic Polymer-Based Membranes for Ultrafast Molecular Separations, Progress in Polymer Science, 110, 101308, 2020.
21. Goh P.S., Ismail A.F., A Review on Inorganic Membranes for Desalination and Wastewater Treatment, Desalination, 434, 60–80, 2018.
22. Bandehali S., Parvizian F., Ruan H., Moghadassi A., ShenJ., Figoli A., Adeleye A.S., Hilal N., Matsuura T., Drioli E., A Planned Review on Designing of High-Performance Nanocomposite Nanofiltration Membranes for Pollutants Removal from Water, Journal of Industrial and Engineering Chemistry, 101, 78–125, 2021.
23. Park N., Kwon B., Kim I.S., Cho J. Biofouling Potential of Various NF Membranes with Respect to Bacteria and Their Soluble Microbial Products (SMP): Characterizations, Flux Decline, and Transport Parameters, Journal of Membrane Science, 258, 43–54, 2005.
24. Farahbakhsh J., Vatanpour V., Khoshnam M., Zargar M., Recent Advancements in the Application of New Monomers and Membrane Modification Techniques for the Fabrication of Thin Film Composite Membranes: A Review, Reactive & Functional Polymers, 166, 105015, 2021.
25. Fallahnejad Z., Bakeri G., Ismail A.F., Overcoming the Tradeoff Between the Permeation and Rejection of TFN Nanofiltration Membranes Through Embedding Magnetic Inner Surface Functionalized Nanotubes, Process Safety and Environmental Protection, 165, 815–840, 2022.
26. Ahmad N.N.R., Ang W.L., Teow Y.H., Mohammad A.W., Hilal N., Nanofiltration Membrane Processes for Water Recycling, Reuse and Product Recovery Within Various Industries: A Review, Journal of Water Process Engineering, 45, 102478, 2022.
27. Lau W.J., Ismail A.F., Goh P.S., Hilal N., Ooi B.S., Characterization Methods of Thin Film Composite Nanofiltration Membranes, Separation & Purification Reviews, 44, 135–156, 2014.
28. Li S., Wang X., Guo Y., Hu J., Lin S., Tu Y., Chen L., Ni Y., Huang L., Recent Advances on Cellulose-Based Nanofiltration Membranes and Their Applications in Drinking Water Purification: A Review, Journal of Cleaner Production, 333, 130171, 2022.
29. Francisco N.C., Harir M., Lucio M., Ribera G., Llado X.M., Rovira M., Caixach J., High-Field FT-ICR Mass Spectrometry and NMR Spectroscopy to Characterize DOM Removal Through a Nanofiltration Pilot Plant, Water Research, 67, 154–165, 2014.
30. Teixeira M.R., Rosa M.J., Nystrom M., The Role of Membrane Charge on Nanofiltration Performance, Journal of Membrane Science, 265, 160–166, 2005.
31. Johnson D.J., Al Malek S.A., Al-Rashdi B.A.M., Hilal N., Atomic Force Microscopy of Nanofiltration Membranes: Effect of Imaging Mode and Environment, Journal of Membrane Science, 389, 486–498, 2012.
32. Hurwitz G., Guillen G.R., Hoek E.M.V., Probing Polyamide Membrane Surface Charge, Zeta Potential, Wettability, and Hydrophilicity with Contact Angle Measurements, Journal of Membrane Science, 349, 349–357, 2010.
33. Epsztein R., DuChanois R.M., Ritt C.L., Noy A., Elimelech M., Towards Single-Species Selectivity of Membranes with Subnanometre Pores, Nature Nanotechnology, 15, 426–436, 2020.
34. Sutariya B., Karan S., A Realistic Approach for Determining the Pore Size Distribution of Nanofiltration Membranes, Separation and Purification Technology, 293, 121096, 2022.
35. Michaels A.S., Analysis and Prediction of Sieving Curves for Ultrafiltration Membranes-A Universal Correlation, Separation and Purification Technology, 15, 1305–1322, 1980.
36. Fu R.Y., Zhang, T., Wang, X.-M., Rigorous Determination of Pore Size Non-Uniformity for Nanofiltration Membranes by Incorporating the Effects on Mass Transport, Desalination, 549, 116318, 2023.
37. Bowen W.R., Mohammad A.W., Hilal N., Characterizations of Nanofiltration Membranes for Predictive Purposes-Use of Salts, Uncharged Solutes and Atomic Force Microscopy, Journal of Membrane Science, 126, 91–105, 1997.
38. Rafique M.S., Tahir M.B., Rafique M., Shakil M., Photocatalytic Nanomaterials for Air Purification and Self-Cleaning, In Nanotechnology and Photocatalysis for Environmental Applications, Tahir M.B., Rafique M., Rafique M.S., Eds., In Micro and Nano Technologies, Elsevier: Amsterdam, The Netherlands, 203–219, 2020.
39. Samavati Z., Samavati A., Goh P.S., Ismail A.F., Abdullah M.S., A Comprehensive Review of Recent Advances in Nanofiltration Membranes for Heavy Metal Removal from Wastewater, Chemical Engineering Research and Design, 189, 530–571, 2023.
40. Pinem J.A., Wardani A.K., Aryanti P.T.P., Khoiruddin K., Wenten I.G., Hydrophilic Modification of Polymeric Membrane Using Graft Polymerization Method: A Mini Review, IOP Conference Series: Materials Science and Engineering, 547, 012054, 2019.
41. Jamil T.S., Mansor E.S., Abdallah H., Shaban A.M., Souaya E.R., Novel Anti Fouling Mixed Matrix CeO2/Ce7O12 Nanofiltration Membranes for Heavy Metal Uptake, Journal of Environmental Chemical Engineering, 6, 3273–3282, 2018.
42. Mkpuma V.O., Moheimani N.R., Fischer K., Schulze A., Ennaceri H., Membrane Surface Zwitterionization for An Efficient Microalgal Harvesting: A Review, Algal Research, 66, 102797, 2022.
43. Guo C., Duan F., Zhang S., He, L., Wang M., Chen J., Zhang J., Jia, Q., Zhang Z., Du M., Heterostructured Hybrids of Metal–Organic Frameworks (MOFs) And Covalent–Organic Frameworks (COFs), Journal of Materials Chemistry, 10, 475–507, 2022.
44. Pakizeh M., May P., Matthias M., Ulbricht M., Preparation and Characterization of Polyzwitterionic Hydrogel Coated Polyamide-Based Mixed Matrix Membrane for Heavy Metal Ions Removal, Journal of Applied Polymer Science, 137, 49595, 2020.
45. Elimelech M., Zhu, X., Childress A.E., Hong S., Role of Membrane Surface Morphology in Colloidal Fouling of Cellulose Acetate and Composite Aromatic Polyamide Reverse Osmosis Membranes, Journal of Membrane Science, 127, 101–109, 1997.
46. Zhang W., Jiang F., Membrane Fouling in Aerobic Granular Sludge (AGS)-Membrane Bioreactor (MBR): Effect of AGS Size, Water Research, 157, 445–453, 2019.
47. Huisman I.H., Pradanos P., Hernandez A., The Effect of Protein–Protein and Protein–Membrane Interactions on Membrane Fouling in Ultrafiltration, Journal of Membrane Science, 179, 79–90, 2000.
48. Rana D., Matsuura T., Surface Modifications for Antifouling Membranes, Chemical Reviews, 110, 2448–2471, 2010.
49. Lee J., Kim I.S., Hwang M.H., Chae K.J., Atomic Layer Deposition and Electrospinning as Membrane Surface Engineering Methods for Water Treatment: A Short Review, Environmental Science: Water Research & Technology, 6, 1765–1785, 2020.
50. Nikkola J., Sievanen, J., Raulio, M., Wei, J., Vuorinen, J., Tang C.Y., Surface Modification of Thin Film Composite Polyamide Membrane Using Atomic Layer Deposition Method, Journal of Membrane Science, 450, 174–180, 2014.
51. Wang C., Chen Y., Hu X., Guo P., Engineering Novel High Flux Thin-Film Composite (TFC) Hollow Fiber Nanofiltration Membranes Via a Facile and Scalable Coating Procedure, Desalination, 526, 115531, 2022.
52. Yadav D., Karki S., Ingole P.G., Current Advances and Opportunities in the Development of Nanofiltration (NF) Membranes in the Area of Wastewater Treatment, Water Desalination, Biotechnological and Pharmaceutical Applications, Journal of Environmental Chemical Engineering, 10, 108109, 2022.
53. Karki S., Ingole P.G., Development of Polymer-Based New High Performance Thin Film Nanocomposite Nanofiltration Membranes by Vapor Phase Interfacial Polymerization for the Removal of Heavy Metal Ions, Chemical Engineering Journal, 446, 137303, 2022.
54. Zhang X., Jin P., Xu D., Zheng J., Zhan Z.M., Gao Q., Yuan S., Xu Z.L., Bruggen B.V.D., Triethanolamine Modification Produces Ultra-Permeable Nanofiltration Membrane with Enhanced Removal Efficiency of Heavy Metal Ions, Journal of Membrane Science, 644, 120127, 2022.
55. Han S., Li W., Xi H., Yuan R., Long J., Xu C., Plasma-Assisted In-Situ Preparation of Graphene-Ag Nanofiltration Membranes for Efficient Removal of Heavy Metal Ions, Journal of Hazardous Materials, 423, 127012, 2022.
56. Yang Y., Wang S., Zhang J., He B., Li J., Qin S., Yang J., Zhang J., Cui Z., Fabrication of Hollow Fiber Nanofiltration Separation Layer with Highly Positively Charged Surface for Heavy Metal Ion Removal, Journal of Membrane Science, 120534, 2022.
57. Kocanova V., Cuhorka J., Dusek L., Mikulasek P., Application of Nanofiltration for Removal of Zinc from Industrial Wastewater, Desalination and Water Treatment, 75, 342–347, 2017.
58. Yang W., Wang Y., Wang Q., Wu J., Duan G., Xu W., Jian S., Magnetically Separable and Recyclable Fe3O4@PDA Covalent Grafted By L-Cysteine Core-Shell Nanoparticles Toward Efficient Removal of Pb2+. Vacuum, 189, 110229, 2021.
59. Mukherjee R., Mondal M., Sinha A., Sarkar S., De S., Application of Nanofiltration Membrane for Treatment of Chloride Rich Steel Plant Effluent, Journal of Environmental Chemical Engineering, 4, 1–9, 2016.