اندازه گیری بلورینگی پلیمرها توسط گرماسنج روبشی تفاضلی
محورهای موضوعی : روش های پیشرفته شناسایی پلیمرها
1 - سهند
کلید واژه: پلیمر, بلورینگی, گرماسنج روبشی تفاضلی, گرمای ذوب, خط پایه,
چکیده مقاله :
گرماسنج روبشی تفاضلی (DSC) به طور گسترده برای تعیین بلورینگی پلیمرهای نیمه بلورین به کار می رود. گرمای ذوب نمونه پلیمری معمولاً با اندازه گیری مساحت بین منحنی گرماگیر ذوب و خط پایه که به صورت دلخواه و خطی از ابتدا تا پایان منحنی ذوب ترسیم می شود، محاسبه می شود. خط پایه ای که به این صورت تعیین می شود، مفهوم فیزیکی ندارد. خط پایه صحیح در واقع همان ظرفیت حرارتی نمونه نیمه بلورین است که هم با افزایش دما و هم با تغییر بلورینگی تغییر می کند و نمی تواند خطی باشد. لذا در اغلب موارد، نتایج بستگی زیادی به تخمین کاربر از خط پایه صحیح دارد. از مقایسه آنتالپی یا گرمای ذوب اندازه گیری شده با گرمای ذوب پلیمر کاملاً بلورین، درجه بلورینگی نمونه تعیین می شود. باید توجه کرد که آنتالپی، کمیتی وابسته به دما است. ذوب بخش های بلورین نمونه پلیمری در دماهایی متفاوت و پایین تر از دمای ذوب پلیمر کاملاً بلورین انجام می شود. به این ترتیب، مقایسه آنتالپی ذوب نمونه نیمه بلورین و کاملاً بلورین که در دماهای مختلفی تعیین شده اند، صحیح نیست. در این کار، نحوه تعیین یک خط پایه صحیح برای منحنی گرماگیر ذوب در نمودار حرارت دهی DSC و نیز تابعیت دمایی آنتالپی ذوب مورد بررسی قرار می گیرد که منجر به تعیین دقیق تر بلورینگی و تابعیت دمایی آن می شود.
-
1. Chen K., Zhang W., Yarin A.L., Pourdeyhimi B., Polymer Melting Temperatures and Crystallinity at Different Pressure Applied, Journal of Applied Polymer Science, 138(37), 50936, 2021.
2. Demina V.A., Krasheninnikov S.V., Buzin A.I., Kamyshinsky R.A., Sadovskaya N.V., Goncharov E.N., Zhukova N.A., Khvostov M.V., Pavlova A.V., Tolstikova T.G., Sedush N.G., Chvalun S.N., Biodegradable Poly(l-lactide)/Calcium Phosphate Composites with Improved Properties for Orthopedics: Effect of Filler and Polymer Crystallinity, Materials Science and Engineering: C, 112, 110813, 2020.
3. Doumeng M., Makhlouf L., Berthet F., Marsan O., Delbé K., Denape J., Chabert F., A Comparative Study of the Crystallinity of Polyetheretherketone by Using Density, DSC, XRD, and Raman Spectroscopy Techniques, Polymer Testing, 93, 106878, 2021.
4. Ricciardi R., Auriemma F., Gaillet C., De Rosa C., Lauprêtre F., Investigation of the Crystallinity of Freeze/Thaw Poly(vinyl alcohol) Hydrogels by Different Techniques, Macromolecules, 37(25), 9510-9516, 2004.
5. Kong Y., Hay J.N., The Enthalpy of Fusion and Degree of Crystallinity of Polymers as Measured by DSC, European Polymer Journal, 39(8), 1721-1727, 2003.
6. Kong Y., Hay J.N., The Measurement of the Crystallinity of Polymers by DSC, Polymer, 43(14), 3873-3878, 2002.
7. Gray A.P., Polymer Crystallinity Determinations by DSC, Thermochimica Acta, 1(6), 563-579, 1970.
8. Wunderlich B., CHAPTER IV - The Defect Crystal, in Macromolecular Physics, Academic Press, 380-523, 1973.
9. Séguéla R., Temperature Dependence of the Melting Enthalpy of Poly (ethylene terephthalate) and Poly(aryl-ether-ether-ketone), Polymer, 34(8), 1761-1764, 1993.
10. Cheng S.Z.D., Wunderlich B., Heat Capacities and Entropies of Liquid, High-Melting-Point Polymers Containing Phenylene Groups (PEEK, PC, and PET), Journal of Polymer Science Part B: Polymer Physics, 24(8), 1755-1765, 1986.
11. Gee D.R., Melia T.P., Thermal Properties of Melt and Solution Crystallized Isotactic Polypropylene, Die Makromolekulare Chemie, 132(1), 195-201, 1970.
12. Pyda M., Bopp R.C., Wunderlich B., Heat Capacity of Poly(lactic acid), The Journal of Chemical Thermodynamics, 36(9), 731-742, 2004.
13. van Krevelen D.W., te Nijenhuis K., Properties of Polymers: Their Correlation with Chemical Structure; their Numerical Estimation and Prediction from Additive Group Contributions, Elsevier Science, 4 ed., 2009.
14. Czerniecka A., Magoń A., Schliesser J., Woodfield B.F., Pyda M., Heat Capacity of Poly(3-hydroxybutyrate), The Journal of Chemical Thermodynamics, 73, 76-84, 2014.
15. Shaw R., Heat Capacities of Liquids. Estimation of Heat Capacity at Constant Pressure and 25.deg., Using Additivity Rules, Journal of Chemical & Engineering Data, 14(4), 461-465, 1969.
16. Bu H.S., Aycock W., Cheng S.Z.D., Wunderlich B., Heat Capacities of Various Solid Linear Macromolecules, Polymer, 29(8), 1485-1494, 1988.
17. Wunderlich B., Jones L.D., Heat Capacities of Solid Polymers, Journal of Macromolecular Science, Part B, 3(1), 67-79, 1969.
18. Pyda M., Wunderlich B., Computation of Heat Capacities of Liquid Polymers, Macromolecules, 32(6), 2044-2050, 1999.
19. Gaur U., Wunderlich B., Heat Capacity and Other Thermodynamic Properties of Linear Macromolecules. II. Polyethylene, Journal of Physical and Chemical Reference Data, 10(1), 119-152, 1981.
20. Zhu L., Chiu F.-C., Fu Q., Quirk R.P., Cheng S.Z.D., Physical Constants of Poly(ethylene), in Polymer Handbook, J. Brandrup, E.H. Immergut, and E.A. Grulke, Editors, Wiley, New York, 9, 1998.
21. ATHAS Data Bank, www.springermaterials.com.
22. Wunderlich B., The ATHAS Database on Heat Capacities of Polymers, Pure and Applied Chemistry, 67(6), 1019-1026, 1995.
23. Wunderlich B., Thermal Analysis of Polymeric Materials, Springer, Berlin, Heidelberg, 2005.
24. Alizadehaghdam M., Heck B., Siegenführ S., Abbasi F., Reiter G., Thermodynamic Features of Perfectly Crystalline Poly(3-hexylthiophene) Revealed through Studies of Imperfect Crystals, Macromolecules, 52(6), 2487-2494, 2019.
25. Pyda M., Melting, in Handbook of Polymer Crystallization, Wiley, Hoboken, New Jersey, 265-286, 2013.
26. Pyda M., Boller A., Grebowicz J., Chuah H., Lebedev B.V., Wunderlich B., Heat Capacity of Poly(trimethylene terephthalate), Journal of Polymer Science Part B: Polymer Physics, 36(14), 2499-2511, 1998.
27. Mathot V.B.F., Pijpers M.F.J., Heat Capacity, Enthalpy and Crystallinity for a Linear Polyethylene Obtained by DSC, Journal of Thermal Analysis, 28(2), 349-358, 1983.
28. Dole M., Crystallinity from Thermal Measurements, Journal of Polymer Science Part C: Polymer Symposia, 18(1), 57-68, 1967.
29. Kavesh S., Schultz J.M., Meaning and Measurement of Crystallinity in Polymers: A Review, Polymer Engineering & Science, 9(6), 452-460, 1969.
30. Mandelkern L., Allou A.L., Gopalan M.R., Enthalpy of Fusion of Linear Polyethylene, The Journal of Physical Chemistry, 72(1), 309-318, 1968.