ریزرخساره ها، محیط رسوبی و چینه نگاری سکانسی سازند قم در ناحیه مرق (جنوب غرب کاشان)
محورهای موضوعی : شاخه های دیگر علوم زمین در ارتباط با زمین شناسی نفتامراله صفری 1 , حسین قنبرلو 2 , ابراهیم محمدی 3
1 - استادیار دانشگاه اصفهان
2 - دانشگاه اصفهان
3 - دانشگاه تحصيلات تکميلي صنعتي و فناوري پيشرفته، کرمان
کلید واژه: سازند قم, ریز رخساره, سکانس های رسوبی, ناحیه مرق,
چکیده مقاله :
سازند قم در ناحیه مرق و در 20 کیلومتری جنوب غرب کاشان با ضخامت 216 متر از سنگ آهک و شیل تشکیل شده است که به صورت ناپیوسته بر روی سنگ آتشفشانی ائوسن و به طور ناپیوسته در زیر سازند قرمز بالایی قرار دارد. براساس آلوکم های اصلی و ویژگی های رسوبی نه ریز رخساره کربناته و یک رخساره آواری شناسایی گردید. این ریز رخساره ها ی کربناته و رخساره آوری در پلت فرمی از نوع شلف باز رسوب گذاری کرده اند. این پلت فرم را می توان به سه محیط شلف داخلی (لاگون محصور و نیمه محصور)، شلف میانی و شلف خارجی تقسیم کرد. براساس توزیع عمودی ریز رخساره ها سه سکانس رسوبی کامل درجه 3 و یک سکانس ناقص رسوبی تشخیص داده شد.
The Qom Formation is located at the Maragh area (20 kilometers southwest of Kashan). The formation with 216 m thickness contains shale and limestones. Volcanic rocks unconformably are covered by the Qom Formation. The upper boundary of the Qom Formation with the Upper Red Formation is also unconformable. Nine microfacies and terrigenous facies were identified based on the main components and sedimentological features. These microfacies and terrigenous facies were deposited on an open-shelf carbonate platform. Three environments were recognized in this carbonate platform. These environments include the inner shelf (restricted and semi-restricted lagoon), middle shelf, and outer shelf. In addition, three third-order and one incomplete depositional sequences were identified based on the vertical distribution of microfacies.
[1] آقانباتی، ع.، 1385 ، زمین شناسی ایران: سازمان زمین شناسی و اکتشافات معدنی کشور، 586 ص.
[2] بختیاری، س.، 1392 ، اطلس راه های ایران: موسسه جغرافیایی و کارتوگرافی گیتاشناسی، 1:1000000
[3] فرشچي، م.، حداديان، ع. و افشاريان زاده، ژ.، 1993، نقشه زمين شناسي چهارگوش کاشان: انتشارات سازمان زمين شناسي کشور، شماره 6257، مقیاس 000/1:100.
[4] قنبرلو، ح.، وزيري مقدم، ح.، صيرفيان، ع.، طاهري، ع. و رحماني، ع.، ۱۳۹۶، ريز رخساره ها و محيط رسوبي سازند شهبازان در چاه شماره 3 ميدان نفتي قلعه نار، جنوب غرب لرستان، فصلنامه زمين شناسي ايران، جلد ۱۱، شماره ۴۱، ۶۳–۷۸.
[5] محمدیان اصفهانی، م.، صفری، ا. و وزیری مقدم ح.، ۱۳۹۲، بررسی ریزرخسارهها و محیط رسوبی سازند قم در ناحیه بیجگان (شمال شرق دلیجان)، رخساره های رسوبی، جلد ۶، شماره ۱، ۶۵–۷۶.
[6] محمدي، ا. و عامري، ح.، 1395، ريزرخساره¬ها و مدل رسوبگذاري سازندقم درناحيه خورآباد (جنوب شرقي قم)، پژوهش-هاي دانش زمين، جلد 7، شماره 28، 37–58.
[7] مهیاد، م.، صفری، ا.، وزیری مقدم، ح. و صیرفیان، ع.، 1397، بازسازی شرایط محیط رسوبی دیرینه و شناسایی سکانس های رسوبی موجود در سازند قم براساس میکروفاسیس ها در ناحیه کهک (جنوب غرب قم)، نشریه علمی-پژوهشی زمین شناسی نفت ایران، جلد هشتم، شماره 15، 32–48.
]8[ ABBASI, G., MOTAMEDI, H., ORANG, K., and NICKANDISH, A.A., 2020, Petroleum Geology of the Western Part of the Central Iran Basin: Journal of Petroleum Geology, 43(2), 171–190.
]9[ AFZAL, J., WILLIAMS, M., LENG, M.J., and ALDRIDGE, R.J., 2011, Dynamic response of the shallow marine benthic ecosystem to regional and pan-Tethyan environmental change at the Paleocene–Eocene boundary: Palaeogeography, Palaeoclimatology, Palaeoecology, 309(3), 141–160.
]10[ ALLAHKARAMPOUR-DILL, M., SEYRAFIAN, A., and VAZIRI-MOGHADDAM, H., 2010, The Asmari Formation, north of the Gachsaran (Dill anticline), southwest Iran: facies analysis, depositional environments and sequence stratigraphy: Carbonates Evaporites, 25, 145–160.
]11[ ALAVI, M., 2004, Regional stratigraphy of the Zagros fold-thrust belt of Iran and its proforeland evolution: American Journal of Science, 304(1), 1–20.
]12[ ALLEN, M.B. and ARMSTRONG, H. A., 2008, Arabia-Eurasia collision and the forcing of mid-Cenozoic global cooling: Palaeogeography, Palaeoclimatology, Palaeoecology, 265, 52–58.
]13[ ALLISON, P.A. and BOTTJER, D.J. 2011, Taphonomy: process and bias through time: Springer, New York, 603.
]14[ AMIRSHAHKARAMI, M., VAZIRI-MOGHADDAM, H., and TAHERI, A., 2007, Paleoenvironmental model and sequence stratigraphy of the Asmari Formation in southwest Iran: Historical Biology, 19(2), 173–183.
]15[ BEAVINGTON-PENNEY, S.J., 2004, Analysis of the effects of abrasion on the test of Palaeonummulites venosus: implications for the origin of nummulithoclastic sediments: Palaios, 19(2), 143–155.
]16[ BEAVINGTON‐PENNEY, S.J., WRIGHT, V.P., and RACEY, A., 2005, Sediment production and dispersal on foraminifera‐dominated early Tertiary ramps: the Eocene El Garia Formation, Tunisia: Sedimentology, 52(3), 537–569.
]17[ BEAVINGTON-PENNEY, S.J., WRIGHT, V.P., and RACEY, A., 2006, The middle Eocene Seeb Formation of Oman: an investigation of acyclicity, stratigraphic completeness, and accumulation rates in shallow marine carbonate settings: Journal of Sediment Research, 76, 1137–1161.
]18[ BERBERIAN, M., 2005, The 2003 Bam urban earthquake: A predictable seismotectonic pattern along the western margin of the rigid Lut block, southeast Iran: Earthquake Spectra, 21(1), 35–99.
]19[ BERBERIAN, M. and KING, G.C.P., 1981,Towards a paleogeography and tectonic evolution of Iran: Canadian Journal of Earth Sciences, 18, 210–265.
]20[ BERESI, M.S., CABALERI, N.G., LÖSER, H., and ARMELLA, C., 2016, Coral patch reef system and associated facies from southwestern Gondwana: paleoenvironmental evolution of the Oxfordian shallow-marine carbonate platform at Portada Covunco, Neuquén Basin, Argentina: Facies, 63, 1–22.
]21[ BERNING, B., REUTER, M., PILLER, W.E., HARZHAUSER, M., and KROH, A., 2009, Larger foraminifera as a substratum for encrusting bryozoans (Late Oligocene, Tethyan Seaway, Iran): Facies, 55(2), 227–241.
]22[ BOVER-ARNAL, T., FERRANDEZ-CANADELL, C., AGUIRRE, J., ESTEBAN, M., FERNANDEZ-CARMONA, J., ALBERT-VILLANUEVA, E., and SALAS, R., 2017, Late Chattian platform carbonates with benthic foraminifera and coralline algae from the SE Iberian plate: Palaios, 32, 61–82.
]23[ BRANDANO, M. and CORDA, L., 2002, Nutrients, sea level and tectonics: constrainsfor the facies architecture of a Miocene carbonate ramp in central Italy: Terra Nova, 14(4), 257–262.
]24[ BRANDANO, M., CORNACCHIA, I., RAFFI, I., and TOMASSETTI, L., 2016, The Oligocene–Miocene stratigraphic evolution of the Majella carbonate platform (Central Apennines, Italy): Sedimentary Geology, 1, 1–14.
]25[ BRANDANO, M., FREZZA, V., TOMASSETTI, L., and PEDLEY, M., 2009, Facies analysis paleoenvironmental interpretation of the Late Oligocene Attard Member (Lower CorallieLimstone Formation), Malta: Sedimentology, 56, 1138–1158.
]26[ BRANDANO, M., LIPPARINI, L., CAMPAGNONI, V., and TOMASSETTI, L., 2012, Downslope-migrating large dunes in the Chattian carbonate ramp of the Majella Mountains (Central Apennines, Italy): Sedimentary Geology, 255, 29–41.
]27[ CATUNEANU, O., ABREU, V., BHATTACHARYA, J.P., BLUM, M.D., DALRYMPLE, R.W., ERIKSSON, P.G., FIELDING, C.R., FISHER, W.L., GALLOWAY, W.E., GIBLING, M.R., and GILES, K.A., 2009, Towards the standardization of sequence stratigraphy: Earth-Science Reviews, 1, 1–33.
]28[ CATUNEANU, O., BHATTACHARYA, J.P., BLUM, M.D., DALRYMPLE, R.W., ERIKSSON, P.G., FIELDING, C.R., FISHER, W.L., GALLOWAY, W.E., GIANOLLA, P., GIBLING, M.R., and GILES, K.A., 2010, Thematic Set: Sequence stratigraphy: common ground after three decades of development: First break, 1, 41–54.
]29[ CATUNEANU, O., GALLOWAY, W.E., KENDALL, C.G.S.C., MIALL, A.D., POSAMENTIER, H.W., STRASSER, A., and TUCKER, M.E., 2011, Sequence stratigraphy: methodology and nomenclature: Newsletters on Stratigraphy, 44, 173–245.
]30[ COSOVIC, V., DROBNE, K., and IBRAHIMPAŠIĆ, H., 2012, The role of taphonomic features in the palaeoecological interpretation of Eocene carbonates from the Adriatic carbonate platform (PgAdCP): Neues Jahrbuch für Geologie und Paläontologie, 265, 101–112.
]31[ ĆOSOVIĆ, V., DROBNE., K., and MORE, A., 2004, Paleoenviromental model for Eocene foraminiferal limestones of the Adriatic carbonate platform (Istrain Peninsula): Facies, 50, 61–75.
]32[ DUNHAM, R.J., 1962, Classification of carbonate rocks according to depositional texture, In: Ham,W.E. (Eds.), Classification of carbonate rocks, -A symposium: American Association Petroleum Geoloist, 1, 108–121.
]33[ EMBRY, A.F. and KLOVAN, J.E., 1971, A late Devonian reef tract on northeastern Banks Islands, Northwest Territories: Bulletin of Canadian Petroleum Geology, 19, 730–781.
]34[ EMERY, D. and MYERS, K., 1996, Sequence stratigraphy: BP Exploration, Stockley Park, London, 297.
]35[ FLUGEL, E., 2010, Microfacies of Carbonate Rocks, Analysis, Interpretation and Application: Springer- Verlag, Berlin, 976.
]36[ GEEL, T., 2000, Recognition of stratigraphic sequence in carbonate platform and slope deposits: empirical models based on microfasies analysis of Paleogene deposits in outhestern Spain: Paleogeography, Paleoclimatology, Paleoecology, 155(155), 211–238.
]37[ GOLONKA, J., 2000, Cambrian–Neogen Plate Tectonic Maps: Wydawnictwo Uniwersytetu Jagiellońskiego, Kraków, Poland, 125.
]38[ GREENSTEIN, B.J. and PANDOLFI, J.M., 2003, Taphonomic alteration of reef corals: Effects of reef environment and coral growth form II: The Florida Keys: Palaios, 18, 495–509.
]39[ HALFAR, J., GODINEZ-ORTA, L., MUTTI, M., VALDEZ-HOLGUÍN, J.E., and BORGES, J.M., 2004, Nutrient and temperature controls on modern carbonate production: an example from the Gulf of California, Mexico: Geology, 32, 213–216.
]40[ HALLOCK, P. and POMAR, L., 2009, Cenozoic evolution of larger benthic foraminifers: paleoceanographic evidence for changing habitats: Proceedings of the 11th International Coral Reef Symposium, Ft. Lauderdale, Florida, 16–20.
]41[ HANDFORD, C.R. and LOUCKS, R.G., 1993, Carbonate depositional sequences and systems tractsresponses of carbonate platforms to relative sea level changes, In: Loucks, R.G., and Sarg, J.F. (Eds.), Carbonate sequence stratigraphy – Recent developments and applications: American Association of Petroleum Geologists (Memoir), 1, 3–41.
]42[ HARZHAUSER, M. and PILLER, W.E., 2007, Benchmark data of a changing sea—palaeogeography, palaeobiogeography and events in the Central Paratethys during the Miocene: Palaeogeography Palaeoclimatology Palaeoecology, 253, 8–31.
]43[ HAUSER, I., OSCHMANN, W., and GISCHLER, E., 2007, Modern bivalve shell assemblages on three atolls offshore Belize (Central America, Caribbean Sea): Facies, 53(4), 451–478.
]44[ HEYDARI, E., 2008, Tectonics versus eustatic control on supersequences of the Zagros Mountains of Iran: Tectonophysics, 451(1), 56–70.
]45[ HORTON, B. K., HASSANZADEH, J., STOCKLIN, D.F., AXEN, G.J., GILLIS, R .J., GUEST, B., AMINI, A., FAKHARI, M.D., ZAMANZADEH, S.M., and GROVE, M., 2008, Detrital zircon provenance of Neoproterozoic to Cenozoic deposits in Iran: implications for chronostratigraphy and collisional tectonics: Tectonophysics, 451(1), 97–122.
]46[ HOTTINGER, L., 2000, Functional Morphology of Benthic Foraminiferal Shells, Envelopes of Cells beyond Measure: Micropaleontology, 46, 57–86.
]47[ HOWELL, J.A. and FLINT, S.S., 1996, A model for high resolution sequence stratigraphy within extensional basins: Geological Society, London, Special Publications, 104(1), 129–137.
]48[ KLICPERA, A., MICHEL, J., and WESTPHAL, H., 2015, Facies patterns of a tropical heterozoan carbonate platform under eutrophic conditions: the Banc d’Arguin, Mauritania: Facies, 61(1), 1–24.
]49[ KNOERICH, A.C. and MUTTI, M., 2003, Controls of facies and sediment composition on the diagenetic pathway of shallow water heterozoan carbonats: the Oligocene of the Maitese Islands: International Journal of Earth Sciences, 92(4), 494–510.
]50[ KOVÁCS, S. and ARNAUD-VANNEAU, A., 2004, Upper Eocene Paleobathymetry approach based on Paleoecological Assemblages from the Pleşca Valley 2. outcrop, Transylvania–a preliminary report: Acta Palaeontologica Romaniae, 4, 191–202.
]51[ LANGER, M.R. and HOTTINGER, L., 2000, Biogeography of selected" larger" foraminifera: Micropaleontology, 46, 105–126.
]52[ LEE, Y.I., HYEONG, K., and YOO, C.M., 2001, Cyclic sedimentation across a middle Ordovician carbonate ramp (Duwibong Formation), Korea: Facies, 44(1), 61–73.
]53[ LOUCKS, R.G., MOODY, R.T.J., BELLIS, J.K., and BROWN, A.A., 1998, Regional depositional setting and pore network systems of the El Garia Formation (Metlaoui Group, Lower Eocene), offshore Tunisia: Geological Society, London, Special Publications, 132(1), 355–374.
]54[ LUCI, L., 2010, Encrusting patterns and life habit of Mesozoic trigonioids: a case study of Steinmanella quintucoensis (Weaver) from the Early Cretaceous of Argentina: Lethaia, 43(4), 529–544.
]55[ MAHYAD, M., SAFARI, A., VAZIRI-MOGHADDAM, H., and SEYRAFIAN, A., 2019, Biofacies, taphofacies, and depositional environments in the north of Neotethys Seaway (Qom Formation, Miocene, Central Iran): Russian Geology and Geophysics, 60(12), 1368–1384.
]56 [MOHAMMADI, E., HASANZADEH-DASTGERDI, M., GHAEDI, M., DEHGHAN, R., SAFARI, A., VAZIRI-MOGHADDAM, H., BAIZIDI, C., VAZIRI, M.R., and SFIDARI, E., 2013, The Tethyan Seaway Iranian Plate Oligo-Miocene deposits (the Qom Formation): distribution of Rupelian (Early Oligocene) and evaporate deposits as evidences for timing and trending of opening and closure of the Tethyan Seaway: Carbonates and Evaporites, 28, 321–345.
]57[ MOHAMMADI, E., HASANZADEH-DASTGERDI, M., SAFARI, A., and VAZIRI-MOGHADDAM, H., 2018, Microfacies and depositional environments of the Qom Formation in Barzok area, SW Kashan, Iran: Carbonates and Evaporites, 1, 1–14.
]58[ MORLEY, C.K., KONGWUNG, B., JULAPOUR, A.A., ABDOLGHAFOURIAN, M., HAJIAN, M., WAPLES, D., WARREN, J., OTTERDOOM, H., SRISURIYON, K., and KAZEMI, H., 2009, Structural development of a major late Cenozoic basin and transpressional belt in central Iran: The Central Basin in the Qom-Saveh area: Geosphere, 5(4), 325–362.
]59[ MOSSADEGH, Z.K., HAIG, D.W., ALLAN, T., ADABI, M.H., and SADEGHI, A., 2009, Salinity changes during late Oligocene to early Miocene Asmari Formation deposition, Zagros Mountains. Iran: Palaeogeography, Palaeoclimatology, Palaeoecology, 272, 17–36.
]60[ NADIMI, A., 2007, Evolution of the Central Iranian basement: Gondwana Research, 12(3), 324–333.
]61[ NEBELSICK, J.H., BASSI, D., and LEMPP, J., 2013, Tracking paleoenvironmental changes in coralline algal-dominated carbonates of the Lower Oligocene Calcareniti di Castelgomberto formation (Monti Berici, Italy): Facies, 59, 133–148.
]62[ PAYROS, A., PUJALTE, V., TOSQUELLA, J., and ORUE-ETXEBARRIA, X., 2010, The Eocene storm-dominated foralgal ramp of the western Pyrenees (Urbasa-Andia Formation): An analogue of future shallow-marine carbonate systems: Sedimentary Geology, 228(3), 184–204.
]63[ PEDLEY, M., 1996, Miocene reef facies of Pelagian region (Central Mediterranean region), In: Franseen, E.K., Esteben, M., Ward, W.C., and Rouchy, J. M. (Eds.), Models for Carbonate Stratigraphy from Miocene Reef complexes of Mediterranean Regions: SEPM Concept Sediment Paleontology, 5, 247–259.
]64[ PERRY, C.T., 2005, Structure and development of detrital reef deposits in turbid nearshore environments, Inhaca Island, Mozambique: Marine Geology, 214(1-3), 143-161.
]65[ POMAR, L., BACETA, J.I., HALLOCK, P., MATEU-VICENS, G., and BASSO, D., 2017, Reef building and carbonate production modes in the west-central Tethys during the Cenozoic: Marine and Petroleum Geology, 83, 261–304.
]66[ POMAR, L., BRANDANO, M., and WESTPHAL, H., 2004, Environmental factors influencing skeletal grain sediment associations: a critical review of Miocene examples from the western Mediterranean: Sedimentology, 51(3), pp.627-651.
]67[ POMAR, L., ESTEBAN, M., MARTINEZ, W., ESPINO, D., DEOTT, V.C., BENKOVICS, L., and LEYVA, T.C., 2015, Oligocene–Miocene carbonates of the Perla Field, Offshore Venezuela: Depositional model and facies architecture, In: Bartolini, C., and P. Mann, eds., Petroleum geology and potential of the Colombian Caribbean margin: AAPG Mermior, The American Association of Petroleum Geologist, 1, 647–674.
]68[ POMAR, L. and HAQ, B.U., 2016, Decoding depositional sequences in carbonate systems: Concepts vs experience: Global Planetary Change, 146, 190–225.
]69[ POMAR, L., MATEU-VICENS, G., MORSILLI, M., and BRANDANO, M., 2014, Carbonate ramp evolution during the Late Oligocene (Chattian), Salento Peninsula, southern Italy: Palaeogeography, Palaeoclimatology, Palaeoecology, 404, 109–132.
]70[ RASSER, M.W., SCHEIBNER, C., and MUTTI, M., 2005, A paleoenvironmental standard section for Early Ilerdian trooical carbonate factories (Corbieres, France Pyrenees, Spain): Facies, 51 1-4, p. 218-232.
]71[ READ, J.F., 1982, Carbonate platforms of passive (extensional) continental margins-types, characteristics and evolution: Tectonophysics, 81(3-4), 195–212.
]72[ READ, J.F., 1985, Carbonate platform facies models: Geological Society of America Bulletin, 69(1), 1–21.
]73[ REUTER, M., PILLER, W.E., HARZHAUSER, M., MANDIC, O., BERNING, B., RÖGL, F., KROH, A., AUBRY, M.P., WIELANDT-SCHUSTER, U., and HAMEDANI, A., 2009, The Oligo-/Miocene Qom Formation (Iran): evidence for an early Burdigalian restriction of the Tethyan Seaway and closure of its Iranian gateways: International Journal of Earth Sciences, 98, 627–650.
]74[ RIEGL, B., POIRIEZ, A., JANSON X., and BERGMAN, K.L., 2010, The gulf: facies belts, physical, chemical, and biological parameters of sedimentation on a carbonate ramp, In: Westphal, H., Reigl, B., and Eberli, G.P., (Eds.), Carbonate Depositional Systems, Assessing Dimensions and Controlling Parameters: Springer, 1, 145–213.
]75[ ROMERO, J., CAUS, E., and ROSELL, J., 2002, A model for the palaeoenvironmental distribution of larger foraminifera based on late Middle Eocene deposits on the margin of the South Pyrenean basin (NE Spain): Palaeogeography, Palaeoclimatology, Palaeoecology, 179(1), 43–56.
]76[ SAFARI, A., GHANBARLOO, H., MANSOURY, P., and ESFAHANI, M.M., 2020a, Reconstruction of the depositional sedimentary environment of Oligocene deposits (Qom Formation) in the Qom Basin (northern Tethyan seaway), Iran: Geologos, 26(2), 93–111.
]77[ SAFARI, A., GHANBARLOO, H., ESFAHANI, M.M., and VAZIRI-MOGHADDAM, H., 2020b, Age determination of the Oligocene Qom Formation and interpretation of palaeoenvironments in the Qom back-arc basin (northern Neotethys) using benthic foraminifera: Zeitschrift der Deutschen Gesellschaft für Geowissenschaften, 171 (4), 503–519.
]78[ SAFARI, A., GHANBARLOO, H., KASIRI, A. and PURNAJJARI, S.M., 2020c, Sedimentary environment and depositional sequences of the Oligocene Qom Formation in Central Iran based on micro-facies and microtaphofacies analysis: Carbonates and Evaporites, 35(4), 1–22.
]79[ SARG, J.F., 1988, Carbonate sequence stratigraphy, In: Wilgus, C.K., Hastings, B.S., Kendall, C.G.St.C., Posamentier, H.W., Ross, C.A., and Van Wagoner, J.C., (Eds.), Sea-Level Changes: An integrated approach. Society for Sedimentary Geology, Special Publication, 43, 155–181.
]80[ SARKAR, S., 2017, Microfacies analysis of larger benthic foraminifera-dominated Middle Eocene carbonates: a palaeoenvironmental case study from Meghalaya, NE India (Eastern Tethys): Arabian Journal of Geosciences, 5, 1–13.
]81[ SEDDIGHI, M., VAZIRI-MOGHADDAMA, H., TAHERI, A., and GHABEISHAVI, A., 2011, Depositional environment and constraining factors on the facies architecture of the Qom Formation, Central Basin, Iran: Historical Biology, 1, 1–10.
]82[ SEYRAFIAN, A. and TORABI, H., 2005, Petrofacies and sequence stratigraphy of the Qom Formation (Late Oligocene-Early Miocene?), north of nain, Southern trend of the Central Iranian Basin: Carbonates and Evaporates, 20(1), 82–90.
]83[ SILVESTRI, G., BOSELLINI, F.R., and NEBELSICK, J.H., 2011, Microtaphofacies analysis of lower Oligocene turbid-water coral assemblages: Palaios, 26, 805–820.
]84[ SOOLTANIAN, N., SEYRAFIAN, A., and VAZIRI-MOGHADDAM, H., 2011, Biostratigraphy and paleo-ecological implications in microfacies of the Asmari Formation (Oligocene), Naura anticline (Interior Fars of the Zagros Basin), Iran: Carbonates Evaporites, 26(2), 167–180.
]85[ QUARANTA, F., TOMASSETTI, L., VANNUCCI, G., and BRANDANO, M., 2012, Coralline algae as environmental indicators: a case study from the Attard member (Chattian, Malta): Geodiversitas, 1, 151–166.
]86[ TAHERI, A., 2010, Paleoenvironmental model and sequence stratigraphy for the Oligo-Miocene foraminiferal limestone in east of Dogonbadan: Stratigraphy Sedimentology, 40(3), 15–30.
]87[ TOMASSETTI, L., BENEDETTI, A., and BRANDANO, M., 2016, Middle Eocene seagrass facies from Apennine carbonate platforms (Italy): Sedimentary Geology, 335, 136–149.
]88[ VAN WAGONER, J.C., POSAMENTIER, H.W., and MITCHUM, R.M.J.R., 1988, An overview of the fundamentals of sequence stratigraphy and key definition. In: Wilgus, C. K., Hastings, B. S., Kendall, C.G.St.C.H., Posamentier, W., Ross., C.A., and Van Wagoner, J.C., (Eds.), Sea- Level Changes: An integrated approach. Society for Sedimentary Geology, Special Publication, 1, 39–45.
]89[ VAZIRI-MOGHADDAM, H., KIMIAGARI, M., and TAHERI, A., 2006, Depositional environment and sequence stratigraphy of the Oligo-Miocene Asmari Formation in SW Iran: Facies, 52(1), 41–51.
]90[ VAZIRI-MOGHADDAM, H., SEYRAFIAN, A., TAHERI, A., and MOTIEI, H., 2010, Oligocene-Miocene ramp system (Asmari Formation) in the NW of the Zagros basin, Iran, Microfacies, paleoenvironment and depositional sequence: Revista Mexicana de Ciencias Geológicas, 27(1), 56–71.
]91[ VINCENT, I., ALLEN, M.B., ISMAIL-ZADEH, A.D., FLECKER, R., FOLAND, K.A., and SIMMONS, D., 2005, Insights from the Talysh of Azerbaijan into the Paleogene evolution of the South Caspian region: Geological Society of America Bulletin, 117(11-12), 1513–1533.
]92[ VINCENT, S.J., MORTON, A.C, CARTER, A., GIBBS, S., and BARABADZE, T.G., 2007, Oligocene uplift of the Western Greater Caucasus: An effect of initial Arabia-Eurasia collision: Terra Nova, 19(2), 160–166.
]93[ WILGUS, C.K., HASTINGS, B.S., POSAMENTIER, H., WAGONER, T.V., ROSS, C.A., and KENDALL, C.G., 1988, sea level changes: an ingrated approach: SEPM Secial Publication, 407.
]94[ WILSON, M.E. and EVANS, M.J., 2002, Sedimentology and diagenesis of Tertiary carbonates on the Mangkalihat Peninsula, Borneo: implications for subsurface reservoir quality: Marine Petroleum Geology, 19(7), 873–900.
]95[ XU, G.S., MA, R.L., and ZHANG, C.J., 2008, Qom group microfacies and Reservoir characteristics of Garmsar block in Iran Basin [J]: Computing Techniques for Geophysical and Geochemical Exploration, 6, 1–20.