ارزیابی روند پیشرفت بیماری سوختگی شمشاد در جنگلهای شمال ایران با استفاده از تكنیكهای پردازش تصاویر ماهوارهای
محورهای موضوعی : مهندسی برق و کامپیوترمرضيه قويدل 1 , پیمان بیات 2 , محمد ابراهيم فراشياني 3
1 - دانشگاه آزاد اسلامی واحد رشت،دانشکده فنی و مهندسی
2 - دانشگاه آزاد اسلامی واحد رشت،دانشکده فنی و مهندسی
3 - دانشگاه آزاد اسلامی واحد رشت،دانشکده فنی و مهندسی
کلید واژه: پردازش تصاویر ماهوارهای, شاخصهای گیاهی, لندست 8, سوختگی, شمشاد خزری,
چکیده مقاله :
در چند سال اخیر، بیماری سوختگی شمشاد به یکی از مهمترین نگرانیهای مدیران منابع طبیعی کشور و دوستداران محیط زیست تبدیل شده است. به منظور کاهش خطر انقراض این گونه، نیاز به تشخیص زودهنگام و تهیه نقشه پراکنش بیماری است و در این راستا، دادههای سنجش از دور میتوانند نقش مهمی را ایفا کنند. در این پژوهش برای بررسی میزان تخریب از ادغام تصاویر پانکروماتیک با قدرت تفکیک مکانی بالا و چندطیفی با قدرت تفکیک مکانی پایین استفاده گردیده و همچنین به طور همزمان در تصاویر استخراجشده از ماهواره لندست 8، ویژگیهای طیفی و بافتی مورد توجه قرار گرفته و در نهایت با استخراج ویژگیهای مؤثر از فضای توصیف کاندیدا با کمک الگوریتم ژنتیک و به کارگیری طبقهبند مناسب در قالب به کارگیری همزمان خوشهبندی فازی و طبقهبندی بیشینه شباهت، کلاس پوشش منطقه با دقت مطلوبی بین سالهای 2014 تا 2018 استخراج نهایی شده است. نتایج ارزیابی و ضریب تبیین مدلها، اعتبارسنجی روش را در برآوردهای آینده مورد تأیید قرار میدهد.
In recent years, boxwood dieback has become one of the essential concerns of practitioners and managers of the natural resources of the country. To control the expansion of the factors contributing to the dieback of box trees, the early detection and preparation of distribution maps are required. Assessment data can play an important role in this regard. The combination of high-resolution and low-spectrum panchromatic images with low resolution is used for evaluating the extent of destruction. Also, spectral and textural features are considered simultaneously in images extracted from Landsat 8 satellite. Finally, by extracting effective features from the candidate description space with the help of genetic algorithm and using the appropriate classification in the form of simultaneous application of fuzzy clustering and maximum similarity classification of area resulted in good accuracy in 2014-2018. The coefficients obtained from the models confirm their model validation for future estimates and the possibility it usage to assess the extent of the affected areas and the evolution of progress for all regions.
[1] ح. اسماعيل¬زاده, ح. اسدی و ع. احمدی، "جامعه شناسي گياهي منطقه حفاظت شده خيبوس،" پژوهش¬های علوم و فناوري چوب و جنگل، دوره 19، شماره 4، صص. 20-1، 1391.
[2] س. سماوات، "بیماری سوختگی شمشاد خزری،" دانش بیماری گیاهی، سال 6، شماره 2، صص. 96-89، بهار و تابستان 1396.
[3] F. Loru, D. Duval, A. Aumelas, and F. Akeb, "Four steroidal alkaloids from the leaves of Buxus sempervirens," Phytochemistry, vol. 54, no. 8, pp. 951-957, Aug. 2000.
[4] A. Jalili and Z. Jamzad, Red Data Book of Iran: A Preliminary Survey of Endemic, Rare & Endangered Plant Species of Iran, Research Institute of Forests and Rangelands Press, Tehran, Iran, 1999.
[5] M. Mirabolfathy, Y. Ahangaran, L. Lombard, and P. W. Crous, "Leaf blight of buxus sempervirens in northern forests of Iran caused by calonectria pseudonaviculata," Plant Disease, vol. 97, no. 8, Article ID: 30722506, Aug. 2013.
[6] I. Strachinis, et al., "First record of Cydalima perspectalis, (Walker, 1859) (Lepidoptera: Crambidae) in Greece." Hellenic Plant Protection J., vol. 8, no. 2, pp. 66-72, Jun. 2015.
[7] R. Esmaili, S. S. Jouibary, J. Soosani, and H. Naghavi, "Mapping of understory infested boxwood trees using high resolution imagery," Remote Sensing Applications: Society and Environment, vol. 18, Article ID: 100289, Apr. 2020.
[8] S. Bella, "The box tree moth Cydalima perspectalis," (Walker, 1859) continues to spread in southern Europe: new records for Italy (Lepidoptera Pyraloidea Crambidae). Redia 96, 51-55, 2013.
[9] S. S. Ray, N. Jain, R. K. Arora, S. Chavan, and S. Panigrahy, "Utility of hyperspectral data for potato late blight disease detection," J. of the Indian Society of Remote Sensing, vol. 39, no. 2, pp. 161-169, Jun. 2011.
[10] D. Liu, M. Kelly, P. Gong, and Q. Guo, "Characterizing spatial-temporal tree mortality patterns associated with a new forest disease," Forest Ecology and Management, vol. 253, no. 1-3, pp. 220-231, Jul. 2007.
[11] J. Zhang, Y. Huang, R. Pu, P. Gonzalez-Moreno, L. Yuan, K. Wu, and W. Huang, "Monitoring plant diseases and pests through remote sensing technology," A Review. Computers and Electronics in Agriculture, vol. 165, Aricle ID: 104943, Aug. 2019.
[12] S. Jabbari, S. J. Khajedin, R. Jafari, and S. Soltani, "Remote sensing technology for mapping and monitoring vegetation cover (case study: Semirom-Isfahan, Iran)," Pollution, vol. 1, no. 2, pp. 165-174, Dec. 2015.
[13] M. Hussain, D. Chen, A. Cheng, H. Wei, and D. Stanley, "Change detection from remotely sensed images: from pixel-based to object-based approaches," ISPRS J. of Photogrammetry and Remote Sensing, vol. 80, no. 1, pp. 91-106, Mar. 2013.
[14] T. G. Whiteside, G. S. Boggs, and S. W. Maier, "Comparing object-based and pixel-based classifications for mapping savannas," International J. of Applied Earth Observation and Geoinformation, vol. 13, no. 6, pp. 884-893, Jun. 2011.
[15] A. Raisi, M. Sheihakitash, H. Kored, and A. Valinafs, "Investigating and prioritizing the factors affecting the defeat of greenhouse business in Zarabad branch of Konarak region," Karafan Scientific Semi-Annual, vol. 15, no. 43, pp. 113-126, Mar. 2018.
[16] M. Larijani and L. Razi, "Explaining the green job identification and priorization of renewable energy domain: wind energy," Karafan Scientific Semi-Annual, vol. 14, no. 42, pp. 15-32, Dec. 2017.
[17] J. Shi, T. Jackson, J. Tao, J. Du, R. Bindlish, L. Lu, and K. S. Chen, "Microwave vegetation indices for short vegetation covers from satellite passive microwave sensor AMSR-E," Remote Sensing of Environment, vol. 112, no. 12, pp. 4285-4300, Jul. 2008.
[18] A. Kazeminia, "Application of remote sensing and GIS in the investigating vegetation coverage," Geospatial Engineering J., vol. 9, no. 1, pp. 75-85, Sept. 2018.
[19] T. A. Naji, "Study of vegetation cover distribution using DVI, PVI, WDVI indices with 2D-space plot," J. Phys, Conf. Series, vol.: 1003, Article ID: 012083, 2018.
[20] V. Vani and V. R. Mandla, "Comparative study of NDVI and SAVI vegetation indices in anantapur district semi-arid areas," International J. of Civil Engineering & Technology, vol. 8, no. 4, pp. 287-300, Apr. 2017.
[21] N. P. Robinson, B. W. Allred, M. O. Jones, A. Moreno, J. S. Kimball, D. E. Naugle, T. A. Erickson, and A. D. Richardson, "A dynamic Landsat derived normalized difference vegetation index (NDVI) product for the conterminous United States," Remote Sensing, vol. 9, no. 8, Article ID: 863, 2017.
[22] P. Garcia and E. Perez, "Mapping of soil sealing by vegetation indexes: a case study in Madrid (Spain)," Geoderma, vol. 268, no. 1, pp. 100-107, Jul. 2016.
[23] G. Melillos and D. G. Hadjimitsis, "Using simple ratio (SR) vegetation index to detect deep man-made infrastructures in cyprus detection and sensing of mines, explosive objects and obscured targets," in Proc. Int. Society for Optics and Photonics XXV, vol. 1148, California, CA, USA, 27 Apr.-9 May 2020.
[24] ح. اسدی، ا. اسماعیل¬زاده, س. م. حسیني, ی. عصری و ح. زارع، " کاربرد روش ترکيب گونه¬هاي معرف در طبقه¬بندي پوشش گياهي،" تاكسونومي و بيوسيستماتيك، دوره 8، شماره 28، صص. 38-21، پاییز 1395.
[25] M. V. Lantschner and J. C. Corle, "Spatial pattern of attacks of the invasive woodwasp Sirex noctilio, at landscape and stand scales," PLOS ONE, vol. 10, no. 5, Article ID: e0127099, 2015.
[26] J. C. Corley, M. V. Lantschner, A. S. Martinez, D. Fischbein, and J. M. Villacide, "Management of Sirex noctilio populations in exotic pine plantations: critical issues explaining invasion success and damage levels in South America," J. of Pest Science, vol. 92, no. 1, pp. 131-142, Oct. 2019.
[27] F. E. Krivak-Tetley, et al., "Aggressive tree killer or natural thinning agent? assessing the impacts of a globally important forest insect," Forest Ecology and Management:, vol. 483, Article ID: 118728, 2021.
[28] D. C. Nepstad, I. M. Tohver, D. Ray, P. Moutinho, and G. Cardinot, "Mortality of large trees and lianas following experimental drought in an Amazon forest," Ecology, vol. 88, no. 9, pp. 2259-2269, Sept. 2007.
[29] E. M. Gora and A. Esquivel-Muelbert, "Implications of size-dependent tree mortality for tropical forest carbon dynamics," Nature Plants, vol. 7, pp. 384-391, 2021.
[30] D. Menge, M. Makobe, and S. Shomari, "Effect of environmental conditions on the growth of Cryptosporiopsis spp. causing leaf and nut blight on cashew Anacardium occidentale Linn," J. of Yeast and Fungal Research, vol. 4, no. 2, pp. 12-20, Mar. 2013.
[31] A. Muntala, "Colletotrichum gloeosporioides species complex: pathogen causing anthracnose, gummosis and die-back diseases of cashew (anacardium occidentale L) in Ghana," European J. of Agriculture and Food Sciences, vol. 2, no. 6, Article ID: 146, 2020.
[32] N. A. Khan, Z. A. Bhat, and M. A. Bhat, "Diseases of stone fruit crops," In M. M. Mir, U. Iqbal, and S. A. Mi (eds.), Diseases of Stone Fruit Crops. Springer, Singapore, pp. 359-395, 2021.
[33] N. K. Prabhakaran, "Cashew nut anacardium occidentale L," In K. P. Nair (ed.), Tree Crops: Harvesting Cash from the World's Important Cash Crops, Springer, Cham, pp. 27-77, 2021.
[34] M. Cordaro, et al., "Cashew nuts counteract oxidative stress and inflammation in an acute experimental model of Carrageenan-induced Paw edema,"Antioxidants, vol. 9, no. 8, Article ID: 660, 24 Jul. 2020.
[35] R. Fusco, et al., "The role of cashew nuts on an experimental model of painful degenerative joint disease," Antioxidants vol. 9, no. 6, Article ID: 7346149, Jun. 2020.
[36] ر. اسماعيلي, ج. سوسني, ش. شتايي جويباري, ح. نقوي و ف. پورشكوري، "پراکنش بيماري سوختگي درختان شمشاد و ارتباط آن با برخي عوامل محيطي (مطالعه موردي: ذخيرگاه جنگلي شمشاد خيبوس و انجيل سي- مازندران)،" پژوهش¬های علوم و فناوري چوب و جنگل، دوره 23، شماره ويژه¬نامه 2، صص. 167-147، 1395.