طراحی یک تقویتکننده ابزاردقیق حالت جریان با CMRR بسیار بزرگ، پهنای باند وسیع، توان مصرفی پایین و ساختاری جدید بر پایه ناقل جریان تمام تفاضلی نسل دوم
محورهای موضوعی : مهندسی برق و کامپیوترسوما احمدی 1 , سیدجواد ازهری 2
1 - دانشگاه علم و صنعت ايران
2 - دانشگاه علم و صنعت ايران
چکیده مقاله :
در این مقاله یک ساختار جدید برای پیادهسازی تقویتکننده ابزاردقیق حالت جریان (CMIA) بر مبنای ناقل جریان نسل دوم تمامتفاضلی (FDCCII) پیشنهاد میشود. این ساختار به دلیل بهرهبردن از امتیازهای کار در حالت جریان بر خلاف تقویتکنندههای ابزاردقیق حالت ولتاژ نیاز به مقاومتهای همجور برای دستیابی به CMRR بزرگ نداشته و به طور ذاتی توانایی بهبود پارامترهای مهم یک CMIA را دارد. همچنین برخلاف سایر انواع جریانی این گروه، استفاده از ساختار تفاضلی تأثیر ناهمجوری بلوکهای الکترونیکی در عملکرد آن را کاهش داده است. هر دوی این مزیتها اندازه و توان مصرفی ساختار را به شدت کاهش و پهنای باند و CMRR مدار را افزایش داده و این مدار را به نمونهای کمنظیر در عملکرد و انتخابی بسیار مناسب برای مجتمعسازی تبدیل نموده است. در CMIA طراحیشده CMRR به عنوان مهمترین پارامتر یک تقویتکننده ابزار دقیق با استفاده از یک طبقه تفاضلگیر جریان بهبود داده شده است. طراحی مدار با استفاده از فناوری um 18/0 CMOS تحت ولتاژهای تغذیه V 1± انجام گرفته و عملکرد آن با استفاده از نرمافزار HSPICE در سطح ترانزیستور بررسی شده است. نتایج شبیهسازی مقادیر CMRR برابر dB 4/227 و پهنای باند KHz 98/8، پهنای باند بهره تفاضلی MHz 08/9، ولتاژ آفست خروجی uV 23/2 و توان مصرفی uW 348 میباشد. به عنوان یک امتیاز منحصربهفرد، مقدار CMRR در پاسخ مونتکارلو (که خطاهای فناوری را نیز منظور مینماید) تا dB 68/228 افزایش یافته که به طور نسبی عدم حساسیت ساختار پیشنهادی را به خطاهای فناوری (PVT) به عنوان یک ویژگی بینظیر تأیید مینماید.
In this paper a novel topology of CMIA based on FDCCII is proposed. Due to benefiting from current mode signal processing, unlike the most of the previously reported IAs, the proposed FDCCII based structure doesn't need well-matched resistors or active blocks to obtain high CMRR and inherently can improve CMRR, bandwidth, power consumption and it has better frequency performances. On the other side, unlike other current mode types of this group, using fully differential structure decreases the mismatch effect in electronic blocks. Both of these advantages significantly reduced the structure size and power consumption while improving bandwidth and CMRR and makes it an excellent and an unbeatable choice for integration. In the proposed circuit, CMRR as the most important property of IA has been greatly improved by using a current subtracting stage. The CMIA has been designed using 0.18 um CMOS Technology under ±1 V supply voltages and the performance of the CMIA has been verified using HSPICE software in transistor level. The CMIA has achieved voltage CMRR of 227.4 dB, voltage CMRR bandwidth of 8.98 KHz, differential voltage gain bandwidth of 9.08 MHz and output offset voltage of 2.23 uV and the IA’s power dissipation is only 348 uW
[1] A. J. Annema, B. Nauta, R. V. Langevelde, and H. Tuinhout, "Analogue circuits in ultra-deep-submicron CMOS," IEEE J. Solid-State Circuits, vol. 40, no. 1, pp. 132-143, Jan. 2005.
[2] S. J. Azhari, Low Voltage Low Power Integrated Circuits, Analog and Digital, Lecture Note Iran University of Science and Technology, 2015-2016.
[3] C. Toumazou, F. J. Lidgey, and D. G. Haigh, Analogue IC Design: The Current-Mode Approach, London, U. K., IEE Press, 1990.
[4] S. J. Azhari, Current-Mode Integrated Circuits, Design and Application, Lecture Note Iran University of Science and Technology, 2015.
[5] G. Ferri and N. C. Guirrini, Low-Voltage, Low-Power CMOS Current Conveyors, ch.4, Kluwer, 2003.
[6] S. Archana, B. K. Madhavi, and I. V. Murali Krishna, "Design of CMOS current mode and voltage mode winner take all circuit on 180 nm technology," in Proc. IEEE Int. Conf. on Electrical, Electronics, and Optimization Techniques, ICEEOT'16, pp. 1879-1882, Chennai, India, 3-5 Mar. 2016.
[7] H. Broomandnia and S. J. Azhari, "Design of a fully differential current buffer (FDCB) based on a new common mode feedforward (CMFF) based common mode separation technique," in Proc. IEEE 2nd Int. Conf. on. Knowledge-Based Engineering and Innovation, KBEI'15, pp. 373-379, Tehran, Iran, 5-6 Nov. 2015.
[8] E. L. Douglas, D. F. Lovely, and D. M. Luke, "A low-voltage current-mode instrumentation amplifier designed in a 0.18-micron CMOS technology," in Proc. Canadian Conf. on Electrical and Computer Engineering, vol. 3, pp. 1777-1780, Niagara Falls, ON, Canada, 2-5 May 2004.
[9] S. J. Azhari and H. Fazlalipoor, "CMRR in voltage-op-amp-based current-mode instrumentation amplifiers (CMIA)," IEEE Trans. on Instrumentation and Measurement, vol. 58, no. 3, pp. 563-569, Mar. 2009.
[10] A. Voulkidou, S. Siskos, and T. Laopoulos, "A low noise low offset current mode instrumentation amplifier," in Proc. 19th Int. Conf. Mixed Design of Integrated Circuits and Systems, pp. 203-207, 24-26 Warsaw, Poland, May 2012.
[11] B. Babaei and S. Mirzakuchaki, "High CMRR, low power and wideband current-mode instrumentation amplifier," in Proc. IEEE Int. Norchip Conf., pp. 3-4, Linkoping, Sweden, 20-21 Nov. 2006.
[12] S. J. Azhari and H. Fazlalipoor, "A novel current mode instrumentation amplifier (CMIA) topology," IEEE Trans. on Instrumentation and Measurement, vol. 49, no. 6, pp. 1272-1277, Dec. 2000.
[13] A. A. Silverio, R. S. J. Reyes, and W. Y. Chung, "A low power high CMRR CMOS instrumentation amplifier based on differential voltage-current conveyor for beta-dispersion range bio-impedance applications," Recent Researches in Circuits, Systems, Multimedia and Automatic Control, pp. 31-36, Rovaniemi, Finland, 18-20 Apr. 2012.
[14] A. Panchal, P. K. Jain, and D. S. Ajnar, "Instrumentation amplifier using differential voltage second generation current conveyor (DVCCII) in standard 0.18 μm CMOS technology," International J. of Engineering Science and Technology, vol. 3, no. 8, pp. 6525-6531, Aug. 2011.
[15] L. Safari and S. Minaei, "A novel resistor-free electronically adjustable current-mode instrumentation amplifier," Circuits, Systems, and Signal Processing, vol. 32, no. 3, pp. 1025-1038, Jun. 2013.
[16] L. Safari and S. Minaei, "New ECCII-based electronically controllable current-mode instrumentation amplifier with high frequency performance," in Proc. European Conf. on Circuit Theory and Design, ECCTD'17, 4 pp., Catania, Italy, 4-6 Sept. 2017.
[17] D. M. Das, et al., "Design considerations for high-cmrr low-power current mode instrumentation amplifier for biomedicai data acquisition systems," in Proc. 21st IEEE Int. Conf. on Electronics, Circuits and Systems, ICECS'14, pp. 251-254, Marseille, France, 7-10 Dec. 2014.
[18] Z. M'Harzi, M. Alami, and F. Temcamani, "A novel high bandwidth current mode instrumentation amplifier," in Proc. 27th Int. Conf. on Microelectronics, ICM'15, pp. 299-302, Casablanca, Morocco, 20-23 Dec. 2015.
[19] M. A. Eldeeb, et al., "A 0.4-V miniature CMOS current mode instrumentation amplifier," IEEE Trans. on Circuits and Systems II: Express Briefs, vol. 65, no. 3, pp. 261-265, Mar. 2018.
[20] M. Han, et al., "Bulk switching instrumentation amplifier for a high-impedance source in neural signal recording," IEEE Trans. on Circuits and Systems II: Express Briefs, vol. 62, no. 2, pp. 194-198, Feb. 2015.
[21] S. Ahmadi and S. J. Azhari, "A novel fully differential second generation current conveyor and its application as a very high CMRR instrumentation amplifier," Emerging Science J., vol. 2, no. 2, pp. 85-92, Apr. 2018.
[22] I. Gkotsis, G. Souliotis, and I. Haritantis, "Instrumentation amplifier based analogue interface," in Proc. IEEE Int. Conf. on Electronics, Circuits and Systems. Surfing the Waves of Science and Technology, pp. 317-320, Lisboa, Portugal, 7-10 Sept. 1998.
[23] S. Suwansawang and T. Thongleam, "A 1-V bulk-driven CMOS fully differential second-generation current conveyor," in Proc. IEEE Int. Symp. on Intelligent Signal Processing and Communications Systems, ISPACS'13, pp. 662-665, Naha, Japan, 12-15 Nov. 2013.