جبرانسازي بهينه و همزمان توانهاي اكتيو و راكتيو در سيستمهاي قدرت با استفاده از خودروهاي برقي متصل به شبكه
محورهای موضوعی : مهندسی برق و کامپیوترفرزان رشیدی 1 , حسن فشکي فراهاني 2
1 - دانشگاه هرمزگان
2 - دانشگاه آزاد اسلامي واحد آشتیان
کلید واژه: الگوريتم بهينهسازي اجتماع ذرات جبرانسازي توان راكتيو خودروهاي برقی قابل اتصال به شبکه,
چکیده مقاله :
خودروهاي برقی قابل اتصال به شبکه در كنار مسئله كاهش آلودگي، داراي قابليتهايي براي كمكرساني به سيستمهاي قدرت ميباشند. يکي از مهمترين اين قابليتها پاسخگويي به نياز شبکه جهت توليد توانهاي اکتيو و راکتيو است. در اين مقاله با توجه به قيود شبکه، ملاحظات فني و قيمتهاي پيشنهادي بازار، يک چارچوب نظري جهت اختصاص ظرفيت اين خودروها ارائه شده است. بدين منظور تابع هدفي با رويکرد حداقلسازي هزينههاي پرداختي توسط بهرهبردار مستقل شبکه توزيع يا DSO به توليدکنندگان هر يک از توانهاي اکتيو و راکتيو پيشنهاد شده است. با توجه به اين که مسأله مورد نظر در قالب يک مسأله بهينهسازي است، براي حل آن نيز از الگوريتم بهينهسازي اجتماع ذرات استفاده شده است. همچنين به منظور تسريع در فرايند بهينهسازي و جلوگيري از گيرافتادن الگوريتم در بهينههاي محلي، راهکارهاي ابتکاري جديدي به الگوريتم اضافه شده است. در اين قالب پيشنهادي، خودروها براي توليد توانهاي اکتيو و راکتيو با ژنراتور رقابت ميکنند. کارایي روش پيشنهادي بر روي يک فيدر شبکه ولتاژ پايين با 134 مشترک و با حضور منابع توليد توانهاي اکتيو و راکتيو مورد ارزيابي قرار گرفته و ميزان توليد و هزينههاي پرداختي براي هر يک از توليدکنندگان تعيين شده است
Plug in electric vehicles besides environment pollution reduction can help power system operation. One of the most important capabilities of them is providing activeand reactive power. This paper considers grid constraints, technical concerns and market price and proposes a framework to allocate the PEV capacity such that operational cost paid by distribution system operator (DSO) to power provider of active and reactive power is minimized. For this purpose, an objective function is defined that includes the payment for each power provider. This objective function is minimized based on particle swarm optimization subject to grid and vehicles constraints. In this framework, the PEVs compete with generator to produce active and reactive power. In order to accelerate the optimization process and prevent the algorithm from being trapped in local optima, new heuristic approaches are included to the original PSO algorithm. To evaluate the effectiveness of the propose method, it is implemented on the low voltage with 134 customer and including the other power providers and the amount of each participants production and payment cost to each component is determined.
[1] D. S. Gautam, F. Musavi, M. Edington, W. Eberle, and W. G. Dunford., "An automotive onboard 3.3-kW battery charger for PHEV application," IEEE Trans. on Vehicular Technology, vol. 61, no. 8, pp. 3466-3474, Oct. 2012.
[2] B. Geng, J. K. Mills, and D. Sun, "Energy management control of microturbine-powered plug-in hybrid electric vehicles using the telemetry equivalent consumption minimization strategy," IEEE Trans. on Vehicular Technology, vol. 60, no. 9, pp. 4238-4248, Nov. 2011.
[3] F. Guo, Er. Inoa, W. Choi, and Jin Wang, "Study on global optimization and control strategy development for a PHEV charging facility," IEEE Trans. on Vehicular Technology, vol. 61, no. 6, pp. 2431-2441, Jul. 2012.
[4] R. M. Patil, J. C. Kelly, Z. Filipi, and H. Fathy, "A framework for the integrated optimization of charging and power management in plug-in hybrid electric vehicles," IEEE Trans. on Vehicular Technology, vol. 62, no. 6, pp. 2402-2412, Jul. 2013.
[5] E. Sortomme and M. A. El-Sharkawi, "Optimal charging strategies for unidirectional vehicle-to-grid," IEEE Trans. on Smart Grid, vol. 2, no. 1, pp. 131-138, Mar. 2011.
[6] E. Sortomme, et al., "Coordinated charging of plug-in hybrid electric vehicles to minimize distribution system losses," IEEE Trans. on Smart Grid, vol. 2, no. 1, pp. 198-205, Mar. 2011.
[7] M. S. ElNozahy and M. M. Salama, "A comprehensive study of the impacts of PHEVs on residential distribution networks," IEEE Trans. on Sustainable Energy, vol. 5, no. 1, pp. 332-342, Mar. 2014.
[8] J. Garcia-Villalobos, et al., "Plug-in electric vehicles in electric distribution networks: a review of smart charging approaches," Renewable and Sustainable Energy Reviews, vol. 38, pp. 717-731, Oct. 2014.
[9] L. Liu, F. Kong, X. Liu, Y. Peng, and Q.Wang, "A review on electric vehicles interacting with renewable energy in smart grid," Renewable and Sustainable Energy Reviews, vol. 51, pp. 648-661, Nov. 2015.
[10] K. M. Tan, T., V. K.Ramachandaramurthy, Jia Y. Yong., "Integration of electric vehicles in smart grid: a review on vehicle to grid technologies and optimization techniques," Renewable and Sustainable Energy Reviews, vol. 53, pp. 720-732, Jan. 2016.
[11] Z. Yang, K. Li, and A. Foley., "Computational scheduling methods for integrating plug-in electric vehicles with power systems: a review," Renewable and Sustainable Energy Reviews, vol. 51, pp. 396-416, Nov. 2015.
[12] A. Sheikhi, S. Bahrami, A. M. Ranjbar, and H. Oraee., "Strategic charging method for plugged in hybrid electric vehicles in smart grids; a game theoretic approach," International J. of Electrical Power & Energy Systems, vol. 53, pp. 499-506, Dec. 2013.
[13] C. D. White and K. M. Zhang, "Using vehicle-to-grid technology for frequency regulation and peak-load reduction," J. of Power Sources, vol. 196, no. 8, pp. 3972-3980, 15 Apr. 2011.
[14] T. Sousa, H, Morais, J, Soares, and Z. Vale, "Day-ahead resource scheduling in smart grids considering vehicle-to-grid and network constraints," Applied Energy, vol. 96, pp. 183-193, Aug. 2012.
[15] A. El-Zonkoly, "Intelligent energy management of optimally located renewable energy systems incorporating PHEV," Energy Conversion and Management, vol. 84, no. 26, pp. 427-435, Aug. 2014.
[16] J. Zhong, et al., "Coordinated control for large-scale EV charging facilities and energy storage devices participating in frequency regulation," Applied Energy, vol. 123, pp. 253-262, Jun. 2014.
[17] S. Lefeng, Z. Qian, and P. Yongjian, "The reserve trading model considering V2G Reverse," Energy, vol. 59, pp. 50-55, Sept. 2013.
[18] H. F. Farahani, H. A. Shayanfar, and M. S. Ghazizadeh, "Incorporation of plug in hybrid electric vehicle in the reactive power market," J. of Renewable and Sustainable Energy, vol. 4, no. 5, Article 053123, 2012.
[19] H. F. Farahani, H. A. Shayanfar, and M. S. Ghazizadeh, "Modeling of stochastic behavior of plug-in hybrid electric vehicle in a reactive power market," Electrical Engineering, vol. 96, no. 1, pp. 1-13, Mar. 2014.
[20] H. F. Farahani, H. A. Shayanfar, and M. S. Ghazizadeh, "Multi-objective clearing of reactive power market including plug-in hybrid electric vehicle," Electric Power Components and Systems, vol. 41, no. 2, pp. 197-220, 2013.
[21] M. Esmaili and A. Goldoust, "Multi-objective optimal charging of plug-in electric vehicles in unbalanced distribution networks," International J. of Electrical Power & Energy Systems, vol. 73, no. 12, pp. 644-652, Dec. 2015.
[22] H. F. Farahani, M. Khalili, A. Rabiee, and M. S. Ghazizadeh, "On the application of plug-in hybrid electric vehicle to compensate network harmonics: a multiobjective approach," Scientia Iranica. Trans. D, Computer Science & Engineering, Electrical, vol. 21, no. 6, pp. 2177-2185, Nov./Dec. 2014.
[23] P. Richardson, D. Flynn, and A. Keane, "Optimal charging of electric vehicles in low-voltage distribution systems," IEEE Trans. on Power Systems, vol. 27, no. 1, pp. 268-279, Feb. 2012.
[24] A. Rabiee, H. Shayanfar, and N. Amjady, "Multiobjective clearing of reactive power market in deregulated power systems," Applied Energy, vol. 86, no. 9, pp. 1555-1564, Sept. 2009.
[25] J. Kennedy and R. Eberhart, "Particle swarm optimization," in Proc. IEEE Int. Conf. Neural Netw, vol. 4, pp. 1942-1948, Oct. 1995.
[26] D. Tang, et al., "A quantum-behaved particle swarm optimization with memetic algorithm and memory for continuous non-linear large scale problems," Information Sciences, vol. 289, no. 2, pp. 162-189, Dec. 2014.
[27] P. Li and H. Xiao, "An improved quantum-behaved particle swarm optimization algorithm," Applied Intelligence, vol. 40, no. 3, pp. 479-496, Apr 2014.
[28] H. Izakian, B. Tork Ladani, A. Abraham, and V. Snasel., "A discrete particle swarm optimization approach for grid job scheduling," International J. of Innovative Computing, Information and Control, vol. 6, no. 9, pp. 1-15, Sept. 2010.
[29] M. R. Rapaic, Z. Kanovic, and Z. D. Jelicic, "Discrete particle swarm optimization algorithm for solving optimal sensor deployment problem," J. of Automatic Control, vol. 18, no. 1, pp. 9-14, Jan. 2008.
[30] DIgSILENT GmbH Germany, DIgSILENT PowerFactory Software Package, http://www.digsilent.de, 2014.
[31] New Yourk Daily Market Price, http://mis.nyiso.com/public/P-2Alist.htm.