کنترل تطبیقی زاويه گام توربين بادي با استفاده از مکانیسم یادگیری عاطفی مغز انسان
محورهای موضوعی : مهندسی برق و کامپیوترمهدی حیات داودی 1 , محسن فرشاد 2 , حمیدرضا نجفی 3 , رضا صداقتی 4 , محمود جورابیان 5
1 - دانشگاه آزاد اسلامی واحد برازجان (دشتستان)
2 - دانشگاه بیرجند
3 - دانشگاه بیرجند
4 - دانشگاه آزاد اسلامی واحد بیضا
5 - دانشگاه شهید چمران اهواز
کلید واژه: توربین بادی زاویه گام کنترلکننده تطبیقی یادگیری عاطفی,
چکیده مقاله :
يکي از روشهاي کنترلي مرسوم در توربينهاي بادي، کنترل زاويه گام پرههاي توربين ميباشد که اين کار به منظور داشتن توان نامي در خروجي توربين، براي سرعتهاي باد بالاتر از سرعت باد نامي انجام ميگيرد. با توجه به اهميت زياد کيفيت توان توليدي توسط توربين و از آنجا که عملکرد بهتر کنترلکننده زاويه گام، کيفيت بهتر خروجي سيستم زاويه گام و متعاقباً کيفيت بهتر توان توليدي توربين را به دنبال دارد، بهينهسازي عملکرد اين کنترلکننده امري حياتي است. در اين مقاله ابتدا براي کنترل زاويه گام از يک کنترلکننده PI استفاده شده و سپس يک کنترلکننده هوشمند عاطفی جدید (برگرفته از مکانيسم يادگيری عاطفی مغز انسان) جايگزين آن گرديده است. با توجه به نتايج شبيهسازي با اين جايگزيني، عملکرد سيستم کنترل زاويه گام در حد بسيار خوبي بهبود يافته است. اين کنترلکننده هوشمند عملکرد خوبي از لحاظ سرعت پاسخدهي، ريپل پاسخ و بالاخره خطاي ماندگار رديابي داشته و در ضمن از قوام قابل ملاحظهاي در قبال تغييرات سرعت باد (نقطه کار) و پارامترهاي سيستم زاويه گام برخوردار است.
The purpose of this paper is optimal location of distributed generation in electric distribution networks. Load uncertainty and desired voltage range has been modeled using fuzzy data theory. The objective function includes loss reduction, improvement of profile index and voltage stability index with their relevant constraints, voltage constraints and transmittable power from the line. Load variation has been shown for three different time durations (peak, off peak and average).PSO technique has been used to optimize the objective function while Max-Min method has been applied to select the answer. Results produced from the proposed model have been provided in 5 different scenarios on a 33 bus system of IEEE.
[1] K. J. Astrom and T. Hagglund, PID Controller: Theory, Design, and Tuning, 2nd Edition, 1995.
[2] G. Tapia, A. Tapia, and J. X. Ostolaza, "Two alternative modeling approaches for the evaluation of wind farm active and reactive power performances," IEEE Trans. on Energy Conversion, vol. 21, no. 4, pp. 909-920, Dec. 2006.
[3] M. M. Hand and M. J. Balas, "Systematic approach for PID controller design for pitch-regulated, variable-speed wind turbines," in 17th ASME Wind Energy Symposium Proc., vol. 3, pp. 89-94, Jun. 1998.
[4] World Wind Energy Association, Half-Year Report 2012, available at: www.wwindea.com. Date of Publication, Oct. 2012.
[5] B. Beltran, T. Ahmed-Ali, and M. E. Benbouzid, "Sliding mode power control of variable-speed wind energy conversion systems," IEEE Trans. on Energy Conversion, vol. 23, no. 2, pp. 551-558, Jun. 2008.
[6] V. I. Utkin, "Sliding mode control design principles and applications to electric drives," IEEE Trans. on Industrial Electronics, vol. 40, no. 1, pp. 23-36, Feb. 1993.
[7] C. Lascu, I. Boldea, and F. Blaabjerg, "Direct torque control of sensorless induction motor drives: a sliding-mode approach," IEEE Trans. on Industrial Applications, vol. 40, no. 2, pp. 582-590, Mar. 2004.
[8] J. P. A. Vieira, M. V. A. Nunes, U. H. Bezerra, and W. Jr. Barra, "Novas estrategias de controle fuzzy aplicadas ao conversor do DFIG para melhoria da estabilidade transitoria em sistemas eolicos," IEEE Latin America Trans., vol. 5, no. 3, pp. 143-150, Jun. 2007.
[9] X. Y. Zhang, J. Cheng, and W. Q. Wang, The Intelligent Control Method Study of Variable Speed Wind Turbine Generator, ICSET, 2008.
[10] L. Jerbi, L. Krichen, and A. Ouali, "A fuzzy logic supervisor for active and reactive power control of a variable speed wind energy conversion system associated to a flywheel storage system," Electric Power Systems Research, vol. 79, no. 6, pp. 919-925, Jun. 2009.
[11] A. S. Yilmaz and Z. Zer, "Pitch angle control in wind turbines above the rated wind speed by multi-layer perceptron and radial basis function neural networks," Expert Systems with Application, vol. 36, no. 6, pp. 9767-9775, Aug. 2009.
[12] G. Peng, "Nonlinear feed forward pitch controller for wind turbine based on rotor's aerodynamic characteristic," in Proc. of the 9th Int. Conf. on Machine Learning and Cybernetics, vol. 2, pp. 879-883, Jul. 2010.
[13] A. F. Bati and S. K. Leabi, "NN Self-Tuning Pitch Angle Controller of Wind Power Generation Unit," in Proc. IEEE Power Systems Conference and Exposition, vol. 4, no. 2, pp. 2019-2022, Nov. 2006..
[14] N. A. Schinas, N. A. Vovos, and G. B. Giannakopoulos, "An autonomous system supplied only by a pitch-controlled variable-speed wind turbine," IEEE Trans. on Energy Conversion, vol. 22, no. 2, pp. 325-331, Jun. 2007.
[15] H. Takaai, Y. Chida, K. Sakurai, and T. Isobe, "Pitch angle control of wind turbine generator using less conservative robust control," in Proc. IEEE Int. Conf. on Control Applications, vol. 3, pp. 542-547, Jul. 2009.
[16] A. Abdelkafi and L. Krichen, "New strategy of pitch angle control for energy management of a wind farm," Energy J., vol. 36, no. 3, pp. 1-10, Mar. 2011.
[17] Y. Joo and J. Back, "Power regulation of variable speed wind turbines pitch control based on disturbance observer," J. of Electrical Engineering & Technology, vol. 7, no. 2, pp. 273-280, Feb. 2012.
[18] P. M. Anderson and A. Bose, "Stability simulation of wind turbine systems," IEEE Trans. on Power Apparatus and Systems, vol. 12, no. 12, pp. 3791-3795, Dec. 1983.
[19] J. G. Slootweg, H. Polinder, and W. L. Kling, "Initialization of wind turbine models in power system dynamics simulations," in Proc. of IEEE Porto Power Tech. Conf., Porto, vol. 4, pp. 324-332, Sep. 2001.
[20] V. Rimas, M. Shinozuka, and M. Takeno, "Parameters study of wind loading on structures," J. of the Structural Div., ASCE, vol. 99, no. 3, pp. 453-468, Mar. 1973.
[21] J. Zaragoza, J. Pou, A. Arias, C. Spiteri, E. Robles, and S. Ceballos, "Study and experimental verification of control tuning strategies in a variable speed wind energy conversion system," Renewable Energy, vol. 36, no. 5, pp. 1421-1430, May 2011.
[22] J. Moren and C. Balkenius, "A computational model of emotional learning in the amygdala," In J. –A. Mayer, A. Berthoz, D. Floreano, H. L. Roitblat, and S. W. Wilson, editors, From Animals to Animats 6, pages 383–391. MIT Press, Cambridge, MA. 2000.