استفاده از ترکیبات هالوکربنی در ساخت کاتالیزور زیگلرناتا بر پایه منیزیم اتوکسید (مروری بر مطالعات)
محورهای موضوعی : زیست پلاستیک ها و پلیمرهای تجديد پذیر
1 - مهندسي پليمريزاسيون
کلید واژه: کاتالیزور, زیگلر ناتا, هالوکربن, پلیمری شدن, پلیاتیلن,
چکیده مقاله :
کاتالیزورهاي موجود در واحدهاي تولید پلـی اتـیلن سـنگین معمولاً از نسلهای دوم و سـوم کاتالیزورهاي زیگلرناتا است. فعالیت این دسته از کاتالیزورها پایین بوده و بـراي تولیـد میزان مشخصی از پلیاتیلن سنگین، کاتالیزور بیشتري در مقایسه با نسلهاي جدیدتر این کاتالیزورها مورد نیاز است. با توجه به اینکه این کاتالیزورها قیمت نسبتاً بالایی دارند، بهرهوری تولید را پـایین میآورند. فعالیت کاتالیزورهای زیگلرناتا ازجمله مسائل پراهمیت در فرایند پلیمری شدن پلی الفین ها است که تحت تأثیر شرایط پلیمری شدن و ترکیب درصد کاتالیزور است. در سالهای اخیر توجه پژوهشگران به استفاده از ترکیبات مختلف برای بهبود عملکرد کاتالیزورها جلب شده است. در این میان ترکیبات هالوکربنی بهعنوان افزایشدهنده فعالیت کاتالیزور موردتوجه قرارگرفتهاند. بررسیها نشان میدهد این ترکیبات علاوه بر فعالیت کاتالیزور بر خواص محصول پلی الفینی ازجمله جرم مولکولی، توزیع اندازه ذرات، چگالی توده، میزان پودر ریز (کمتر از 63 میکرون) و واکس تولیدی در فرایند، تأثیرگذار هستند. ترکیبات هالوکربنی میتوانند هم بهعنوان جزئی از ترکیب درصد کاتالیزور و هم در فرایند پلیمری شدن مورد استفاده قرار گیرند. این ترکیبات با تأثیر بر ترکیب درصد کمک کاتالیزور سبب بیشتر شدن گروههای فعال در کمک کاتالیزور و در نتیجه سبب افزایش فعالیت کاتالیزور می شوند. درواقع، افزایش فعالیت کاتالیزور به دلیل بیشتر شدن مواضع فعال در دسترس یا فعال کردن مراکزی که به هر دلیلی در فرایند پلیمری شدن غیرفعال شدهاند عمل میکند.
-
1. Trivedi P. M., Gupta V. K., “Progress in MgCl2 supported Ziegler-Natta catalyzed polyolefin products and applications” , J. Polym. Res., Springer, 28, 2, 1–20, 2021.
2. Bazvand R., Bahri-laleh N., Nekoomanesh-haghighi M., Abedini H., “Effect of FeCl3 on the Performance of TiCl4 / MgCl2 ( Etoxide type )/ SiCl4 / TEAL Catalytic System in Ethylene Polymerization” ,11th International Seminar on Polymer Science and Technology, 2014.
3. Ribeiro R., Fontanilleb M., “Homo and copolymerization of ethylene: improvement” , Macromol Chem Phys 196:3833–3844, 1995.
4. Zhang Z., Jiang B., He F., Fu Z., Xu J., Fan Z., “Comparative study on kinetics of ethylene and propylene polymerizations with supported Ziegler–Natta catalyst: Catalyst fragmentation promoted by polymer crystalline lamellae”, Polymers (Basel)., 11, 2, 358, 2019.
5. Yang H., Zhang L., Fu Z., Fan Z., “Comonomer effects in copolymerization of ethylene and 1-hexene with MgCl2-supported Ziegler-Natta catalysts: New evidences from active center concentration and molecular weight distribution” , J. Appl. Polym. Sci., 132, 2, 1–9, 2015.
6. Barabanov A. A., Zakharov V. A., “Supported Ziegler-Natta catalyst for ethylene polymerization: Novel data on the effect of polymerization temperature on the number of active centers and propagation rate constant” , Catal. Commun., Elsevier B.V., 45, 79–82, 2014.
7. Böhm L. L., “Ethylene polymerization process with a highly active Ziegler-Natta catalyst: 1. Kinetics” , Polymer (Guildf)., Elsevier, 19, 5, 553–561, 1978.
8. Guo X., Cui L., Wang Y., Yi J., Sun J., Liu Z. et al., “Mechanistic study on effect of electron donors in propylene polymerization using the Ziegler–Natta catalyst” , J. Phys. Chem. C, ACS Publications, 2021.
9. Zhang B., Qian Q., Yang P., Jiang B., Fu Z., Fan Z., “Responses of a supported Ziegler–Natta catalyst to comonomer feed ratios in ethylene–propylene copolymerization: Differentiation of active centers with different catalytic features” , Ind. Eng. Chem. Res., ACS Publications, 60, 12, 4575–4588, 2021.
10. Xie J., Tan X., Peng W., Yang X., He A., “Effect of AlEt2Cl on the polymerization of isoprene using TiCl4/MgCl2 type Ziegler-Natta catalyst: A DFT study” , Mol. Catal., Elsevier, 502, 111399, 2021.
11. Liu Y., Qin Y., Dong J.-Y., “Assessing 1, 9-decadiene/ethylene copolymerization with Ziegler–Natta catalyst to access long chain-branched polyethylene” , ACS omega, ACS Publications, 6, 1, 675–679, 2021.
12. Fernandes J. A., “Ziegler-natta catalyst systems and methods of controlling particle size” , US Pat, 20210070896, 2021.
13. Auyeung E., Ewart S. W., Ferrari D., Davidian T., Vanspeybroeck R., “Ziegler-natta catalyst deactivation and neutralization” , US Pat, 20210002393 , 2021.
14. Zheng W.-P., Ma Y.-P., Du D.-L., He A.-H., Shao H.-F., Liu C.-G., “Polymerization kinetics of propylene with the MgCl2-supported Ziegler-Natta catalysts—Active centers with different tacticity and fragmentation of the catalyst” , Chinese J. Polym. Sci., Springer, 39, 1, 70–80, 2021.
15. Albizzati E., Giannini U., Collina G., Noristi L., Resconi L., “Polypropylene handbook” , Hanser Publ. Munich Vienna New York, 11, 1996.
16. Ivin K. J., Rooney J. J., Stewart C. D., Green M. L. H., Mahtab R., “Mechanism for the stereospecific polymerization of olefins by Ziegler–Natta catalysts” , J. Chem. Soc. Chem. Commun., Royal Society of Chemistry, 14, 604–606, 1978.
17. Brookhart M., Green M. L. H., “Carbon hydrogen-transition metal bonds”, J. Organomet. Chem., Elsevier, 250, 1, 395–408, 1983.
18. Kashiwa N., Yoshitake J., “The influence of the valence state of titanium in MgCl2-supported titanium catalysts on olefin polymerization” , Die Makromol. Chemie, 185, 6, 1133–1138, 1984.
19. Abbas-Abadi M. S., Haghighi M. N., Bahri-Laleh N., Akbari Z., Tavasoli M. R., Mirjahanmardi S. H., “Polyolefin production using an improved catalyst system” ,US Pat, 9035000, 2015.
20. Yang Y., Kim H., Lee J., Paik H., Jang H. G., “Roles of chloro compound in homogeneous [Cr (2-ethylhexanoate) 3/2, 5-dimethylpyrrole/triethylaluminum/chloro compound] catalyst system for ethylene trimerization” , Appl. Catal. A Gen., Elsevier, 193, 1–2, 29–38, 2000.
21. Klaue A., Kruck M., Friederichs N., Bertola F., Wu H., Morbidelli M., “Insight into the synthesis process of an industrial Ziegler–Natta catalyst” , Ind. Eng. Chem. Res., ACS Publications, 58, 2, 886–896, 2018.
22. Bahri‐Laleh N., Abbas‐Abadi M. S., Haghighi M. N., Akbari Z., Tavasoli M. R., Mirjahanmardi S. H., “Effect of halocarbon promoters on polyethylene properties using MgCl2 (ethoxide type)/TiCl4/AlEt3/H2 catalyst system” , J. Appl. Polym. Sci., Wiley Online Library, 117, 3, 1780–1786, 2010.
23. Bazvand R, Bahri-Laleh N., Abedini H., Effect of Modifiers on the Performance of Ziegler-Natta Catalysts in Olefin Polymerization, BASPARESH,Volume 4,Issue 4_Pages 22-31, 2014.
24. Abbas-Abadi M. S., “The production of high efficiency Ziegler–Natta catalyst with dual active sites nature using cyclohexyl chloride as promoter with super activity and produced superior polyethylene with controllable molecular weight distribution” , Des. Monomers Polym., Taylor & Francis, 20, 1, 524–531, 2017.
25. Abedi S., Azadi F., Daftari-Besheli M., Majdabadi-Farahani N., Safinejad A., “Butyl chloride as promoter in ethylene polymerization by magnesium ethoxide-supported catalyst” , J. Appl. Polym. Sci., 131, 8, 1–6, 2014.