تحلیل و توزیع تنش در چرخ دندههای پلیمری
محورهای موضوعی :
1 - گروه مكانيك
کلید واژه: چرخ دنده, تنش تماسی, المان محدود, توزیع تنش,
چکیده مقاله :
با به روی کار آمدن پلیمرها و افزایش کابرد آن در صنعت، چرخ دندههای پلیمری نیز به علت برخورداری از امتیازاتی همچون، خودروانکار بودن، هزینه تولید پایین و صدای کم، جایگاه خود را در صنعت تثبیت کردهاند. توجه به رفتار چرخ دندههای پلیمری در گشتاورهای متفاوت، باعث افزایش عمر آن ها خواهد شد. چرخ دندههای پلیمری، به دلیل استحکام پایین نسبت به چرخ دندههای فلزی، مدهای واماندگی متفاوتی داشته و حساسیت زیادی به تنش و توزیع تنش دارند. بررسی هر چه دقیقتر تنش تماسی و نحوه توزیع تنش در حین درگیری جفت دنده، درک بهتری در طراحی هر چه بهتر چرخ دنده خواهد کرد. در این پژوهش، از مدل المان محدود برای تعیین تنش تماسی در ده موقعیت متفاوت از سر تا ته دنده چرخ دنده در حین درگیری جفت دنده استفاده شده است. برای کاهش زمان محاسبات، از یک جفت دنده محرک و متحرک استفاده شد. علاوهبراین، برای افزایش دقت تحلیل المان محدود، از مش بندی ریز برای همگرایی نتایج استفاده شد. مش بهینه به تمام قسمت های مدل اعمال شد. نسبت درگیری و زاویه درگیری جفت دنده با مشخصات هندسی و جنس مشخص برای اعمال شرایط مرزی محاسبه شد. بیش ترین مقدار تنش (45.47 مگاپاسگال) در زیر خط گام، مشاهده شد. علاوهبراین، توزیع تنش به صورت مورب و در راستای خط فشار، مشاهده شد.
-
1. Mohsenzadeh R., Shelesh-Nezhad K., Experimental Studies on the Durability of PA6-PP-Caco3 Nanocomposite Gears, Journal Of Science And Technology of Composites, 3, 147-156, 2016.
2. محسن زاده، م و شلش نژاد، ک، تاثیر نانو ذرات کربنات کلسیم بر رفتار سایشی چرخدنده های نانو کامپوزیتیPA6/PP/Nano Caco3. فصلنامه علمی-پژوهشی مواد نوین. 24 صفحه 95-106، 1395.
3. Mohsenzadeh R., Wear and Failure of Polyoxymethylene/Calcium Carbonate Nanocomposite Gears.Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology: P. 1350650119867530, 2019.
4. Johnson K., A Review of the Theory of Rolling Contact Stresses.Wear. 94-19, 1966.
5. Dutt K.A., Soni S., Patel D., Hertzian Contact Stress Analysis in Roller Power Transmission One-Way Clutch by Using Finite Element Analysis, In Advanced Engineering Optimization Through Intelligent Techniques., Springer. P. 621-630, 2020.
6. He Y., G Li., Zhao Y., Sun Y., Jiang G., Numerical Simulation-Based Optimization of Contact Stress Distribution and Lubrication Conditions in the Straight Worm Drive. Strength of Materials. 50, 157-165, 2018.
7. Hertz, H., On the Contact of Rigid Elastic Solids, J. Fur Die Reine Und Angew. 1882, Math.
8. Hertz, H., On the Contact of Rigid Elastic Solids and on Hardness, Chapter 6: Assorted Papers By H. Hertz., Macmillan, New York. 1882.
9. Liu C., Liu J.Z., Pan C.H., Chen R.M., Effect of Pre-Wear on the Rolling Contact Fatigue Property of D2 Wheel Steel.Wear. 442, 154-203, 2020.
10. Lin Y., Zhou Z., Li K.Y., Improved Wear Resistance at High Contact Stresses of Hydrogen-Free Diamond-Like Carbon Coatings by Carbon/Carbon Multilayer Architecture.Applied Surface Science. 477, 137-146, 2019.
11. Medina R. M. Cerrada Cabrera D., Sánchez R.V., Li C., De J.V., Deep Learning-Based Gear Pitting Severity Assessment Using Acoustic Emission, Vibration And Currents Signals. In 2019 Prognostics And System Health Management Conference (PHM-Paris). Of Conference:Publishe., 2019.
12. Wright D.H., Testing Automotive Materials and Components. Society of Automotive Engineers, 400 Commonwealth Dr, Warrendale, PA 15096, USA, 254, 1993.
13. Dudley D.W., Handbook of Practical Gear Design. Mc Graw-Hill Book Company, P. 656, 1984.
14. Li J., Li X., He D., Qu Y., A Novel Method for Early Gear Pitting Fault Diagnosis Using Stacked SAE And GBRBM. Sensors.4.19, 758, 2019.
15. Wen Q., Du Q., Zhai X., An Analytical Method for Calculating the Tooth Surface Contact Stress of Spur Gears with Tip Relief. International Journal of Mechanical Sciences. 151,170-180, 2019.
16. Standard B., ISO B., Calculation of Load Capacity of Spur And Helical Gears—.ISO. 6336, 1996, 2006.
17. American Gear Manufacturers Association, and American National Standards Institute. Fundamental rating factors and calculation methods for involute spur and helical gear teeth. American Gear Manufacturers Association, 1994.
. 18. Zhao L., Frazer R.C., Shaw B., Comparative Study of Stress Analysis of Gears with Different Helix Angle Using the ISO 6336 Standard and Tooth Contact Analysis Methods. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science. 230, 1350-1358, 2016.
19. Huang K.J., Su H.W., Approaches to Parametric Element Constructions And Dynamic Analyses of Spur/Helical Gears Including Modifications and Undercutting. Finite Elements in Analysis and Design. 46, 6-11, 2010.
20. Fuentes A., Nagamoto H., Litvin F., Gonzalez-Perez, I and Hayasaka, I., Computerized Design of Modified Helical Gears Finished by Plunge Shaving.Computer Methods in Applied Mechanics and Engineering. 199, 1677-1690, 2010.
21. Zanzi C., Pedrero J.I., Application of Modified Geometry of Face Gear Drive.Computer Methods in Applied Mechanics and Engineering. 194, 3047-3066, 2005. 22. Colbourne J.R., The Geometry of Involute Gears. Springer Science & Business Media 2012.
23. Litvin F.L. Fuentes A., Gear Geometry and Applied Theory. Cambridge University Press 2004.