مروری بر راندمان انتقال و توزیع آب در شبکههای آبیاری ایران و روشهای برآورد آن
محورهای موضوعی : پایداری محیطیزینب سجودی 1 , سید مهدی هاشمیشاهدانی 2
1 - دانشگاه تهران - پردیس ابوریحان
2 - عضو هیئت علمی دانشگاه تهران
کلید واژه: آبیاری, انتقال, تلفات, توزیع, کانال,
چکیده مقاله :
شبکههاي آبیاري وظیفه توزیع و تحویل آب کشاورزي را به عهده دارند لذا بهبود عملکرد آنها کاهش تلفات و افزایش راندمان توزیع آب را به همراه داشته و در نتیجه بهبود بهرهوری آب را منجر میشود. بررسی عملکرد بهرهبرداری شبکههای آبیاری بهمنظور انجام برنامهریزی و بهبود شبکهها و سامانههای آبیاری امری ضروری میباشد. اولین هدف از ارزیابی تعیین میزان تلفاتی است که در فرآیند توزیع و تحویل آب کشاورزی در شبکه کانالهای آبیاری رخ میدهد. تلفات در سیستمهای انتقال و توزیع آب کشاورزی به دو دلیل اصلی رخ میدهد: نشت و عملکرد نامناسب سازههای کانال که باعث ایجاد تلفات بهرهبرداری میشود. عوامل مختلفی از جمله رشد علفهاي هرز در كانالها، تجمع رسوب در كانالها، تجمع زباله در كانالها، ترکخوردن پوشش کانال، خرد شدن يا جابهجايي قطعات بتن در كانالها، تخريب به دلیل كيفيت نامناسب مصالح و عدم وجود دانش کافی بهره برداری در سطح کلان و خرد تصمیم گیران آب کشور سبب افزایش تلفات در سامانه های توزیع و تحویل کشاورزی هستند. عوامل تاثیر گذار در بهرهبرداری شبکهها شامل انجام منظم فرایند نگهداری سالانه و نحوه عملکرد اپراتورهای مستقر در شبکه برای تنظیم به موقع و صحیح سازههای آبگیر به منظور جلوگیری از شرایط هیدرولیکی ناپایدار در کانالهای اصلی و فرعی هستند که میتوان با سرمایهگذاری لازم برای آموزش اپراتورها و تیمهای مدیریتی و بهرهبرداری در شبکههای آبیاری، حجم قابل توجهی از تلفات بهرهبرداری را کاهش داد. در این مطالعه به بررسی و جمعبندی نتایج مطالعات انجام شده در رابطه با تعیین راندمانهای انتقال و توزیع در شبکههای آبیاری پرداخته شده است.
Irrigation networks are responsible for the distribution and delivery of agricultural water, so improving their performance reduces losses and increases the efficiency of water distribution, and thus leads to improved water efficiency. Investigating the operation of irrigation networks is essential for planning and improving irrigation networks and systems. The first purpose of the assessment is to determine the amount of losses that occur in the process of distribution and delivery of agricultural water in the network of irrigation canals. Losses in agricultural water conveyance and distribution systems occur for two main reasons: leakage and improper performance of canal structures that cause operating losses. Various factors such as weed growth in canals, accumulation of sediment in canals, accumulation of garbage in canals, cracking of canal cover, crushing or moving of concrete parts in canals, destruction due to poor quality of materials and lack of sufficient knowledge of total operation and the wisdom of the country's water decision-makers is increasing losses in agricultural distribution and delivery systems. Factors influencing the operation of networks include regular annual maintenance process and the operation of network operators to timely and correctly adjust the catchment structures to prevent unstable hydraulic conditions in the main and secondary channels, which can be invested in training operators and teams. Management and operation in irrigation networks significantly reduced the volume of operation losses. In this study, the results of studies on the determination of conveyance and distribution efficiencies in irrigation networks have been reviewed and summarized.
بهراملو، رضا؛ عباسی، نادر؛ مامن پوش، علیرضا؛ اخوان، کرامت؛ ریاحی، حمید (1396). ارزیابی راندمان انتقال و تلفات آب در کانالهای انتقال آب با پوشش ژئوممبران HDPE در شبکههای آبیاری زاینده رود، مغان و کرمان. تحقیقات آب و خاک ایران، 48 (4) ، 725-735.
جمالی، رضا؛ بشارت، سینا؛ یاسی، مهدی؛ امین پور، افشین (1397). ارزیابی راندمانهاي آبیاري، کارآیی مصرف و بهرهوري آب در حوضه دریاچه ارومیه. علوم آب و خاك، 22 (3)، 117-130.
حسینیجلفان، محسن؛ هاشمیشاهدانی، سیدمهدی؛ جوادی، سامان (1399). ارزیابی میزان تأثیرگذاری سامانه کنترل خودکار توضیع آب سطحی کشاورزی به منظور کاهش برداشت و تعادل بخشی آبخوان در شرایط کم آبی (مطالعه موردی: کانال اصلی شبکه آبیاری قزوین). مدیریت آب و آبیاری، 10 (2)، 299- 281. 10.22059/JWIM.2020.301641.791
ریاحی، حمید؛ عباسی، نادر؛ ملایی، عباس (1399). ارزيابي عملكرد فني و وضعيت بهره برداري از كانالهاي انتقال آب استان كرمان. آبیاری و زهکشی ایران، 7 (2) ، 167-177.
سلامتی، نادر؛ ورجاوند، پیمان؛ آبسالان، شکراله؛ عزیزی، آذرخش؛ گوشه، محی الدین؛ حبیبی، جعفر (1397). ارزیابی راندمان توزیع آب در کانالهای بتنی و کانالتها در شبکههای آبیاری استان خوزستان. تحقیقات مهندسی سازه های آبیاری و زهکشی، 19 (72) ،149-164.
سهرابی، تیمور؛ پوربروجنی، احمدجواد (1384). بازده های انتقال و توزیع در سبکه آبیاری دشت قزوین. پژوهش آب، خاک و گیاه، 5 (2)، 53-64.
شاهرخ نیا، محمدعلی؛ علیان غیاثی، عبدالمطلب (1396). روشهای برآورد نشت در کانالها و بررسی نشت و راندمان توزیع در شبکه آبیاری درودزن. مدیریت آب در کشاورزی، 4 (2)، 27-36.
شفیعی، بهروز؛ شاهرخ نیا، محمدعلی (1397). بررسی شاخص هاي ارزیابی عملکرد تحویل آب در نهر ادامه ي سمت چپ شبکه ي آبیاري درودزن. مهندسی منابع آب، 11 (39) ،73-86
شینی، علی؛ مینایی، سهراب؛ نوری، منصور (1394). بررسی تلفات آب و ارائه راهکارهایی جهت کاهش آن در شبکه آبیاری دز. فصلنامه علمی وتخصصی مهندسی آب،3 (2) ، 87-98
عباسی، فریبرز؛ سهراب، فرحناز؛ عباسی، نادر (1395). ارزیابی وضعیت راندمان آب آبیاری در ایران. تحقیقات مهندسی سازه های آبیاری و زهکشی،17 (67) ، 113-128
کریمی، حبیب؛ هاشمیشاهدانی، سیدمهدی؛ هاشمی گرمدره، سیدابراهیم؛ لیاقت، عبدالمجید (1399). برآورد میزان تلفات ناشی از انتقال، توزیع و تحویل آب کشاورزی. مطالعه موردی شبکه آبیاری روددشت اصفهان. مدیریت آب و آبیاری، 10 (1)،156- 143. 10.22059/JWIM.2020.297869.762
معروفی، صفر؛ سلطانی، حمزه (1385). برآورد راندمان هاي انتقال و توزيع آب در شبكه آبياري و زهكشي شاوور با استفاده از يك رابطه نمايي. پژوهش كشاورزی، 6 (1)، 36-47
نحوی نیا، محمدجواد؛ لیاقت، عبدالمجید؛ عباسی، فریبرز (1398). ارزيابی شبکه آبياری با مفاهيم کلاسيک و جديد راندمان آبياری. تحقيقات آب و خاک ايران، 50 (3)، 567-579. 10.22059/IJSWR.2018.125311.667237
Abu Khashaba, M.I. (2013). INNOVATING IMPERMEABLE CONCRETE APPROPRIATE FOR CANAL LINING USING A SPECIFIC MIXING RATIO AND APPLYING IT TO A PILOT REACH. journal of engineering sciences, 41 (3), 900 – 918.
Afrasiabikia, P., Parvaresh Rizi, A., Javan, M. (2017). Scenarios for improvement of water distribution in Doroodzan irrigation network based on hydraulic simulation. Computers and Electronics in Agriculture, 1 (135), 312-320. https://doi.org/10.1016/j.compag.2017.02.011
Alebachew, S., Ing Pratap, S. J. (2018). Evaluation of canal water conveyance and on-farm water application for a small-scale irrigation scheme in Ethiopia. International Journal of Water Resources and Environmental Engineering, 10 (8), 100 – 110.
Amol, K., Nagarajan, R. (2018). Conveyance Loss Modelling and Conservation Planning for Irrigation Canals – A Geo-Spatial Approach. International Journal of Engineering and Technical Research, 8 (1), 384-393
Agide, Z., Haileslassie, A., Sally, H., Erkossa, T., Schmitter, P.S., Langan, S.J. Hoekstra, D. (2016). Analysis of water delivery performance of smallholder irrigation schemes in Ethiopia: Diversity and lessons across schemes. typologies and reaches.
Barkhordari, S., Shahadany, S.H., Taghvaeian, S., Firoozfar, A.R., Maestre, J.M. (2020). Reducing losses in earthen agricultural water conveyance and distribution systems by employing automatic control systems. Computers and Electronics in Agriculture, 1(168), 105-122. https://doi.org/10.1016/j.compag.2019.105122
Bakry, M.F., Awad, A.A. (1997). Practical estimation of seepage losses along earthen canals in Egypt. Water Resources Management, 1(11),197-206
Birara, H., Halefom, A. (2017). Evaluation of seepage loss in Gorezen irrigation canals, dabatworeda, north Gondar, Ethiopia. Engineering Science and Technology: An International Journal (ESTIJ), 7(1).
Bos, M.G., Nugteren, J. (1990). On irrigation efficiencies. [1974]. International Institute for land reclamation and improvement/ILRI Publication:19
Brouwer, C., Prins, K., Heibloem, M. (1989). Irrigation water management: irrigation scheduling. Training manual, 4.
Brinkley, A., McAuley, C., Lush, G., Parsons, S., Stanley, I., Jackson, P., Aseervatham, E., Devlin, K., Mapson, J. (2004). Management, measurement and remediation of seepage from open channels. In Engineering Salinity Solutions: 1st National Salinity Engineering Conference 2004 (p. 164). Engineers Australia.
Chow, V. Te. (1959). Open Channel Hydraulics. Mc Graw-Hill Book Company, Inc, New York.
Contor, B.A. (2004). Irrigation Conveyance Loss. Idaho Water Resources Research Institute Technical Report, 1 (2), 4 -8.
Cantoni, M., Weyer, E., Li, Y., Ooi, S.K., Mareels, I., Ryan, M. (2007). Control of large-scale irrigation networks. Proceedings of the IEEE, 95(1),75-91.
Eckert, S., Franke, S., Gundrum, T., Gerbeth, G., Willemetz, J.C. (2015). Applications of Ultrasonic Doppler Velocimetry to flow measurements in hot liquid metals. In: 8th International Conference on Electromagnetic Processing of Materials.
Figueiredo, J., Botto, M.A., Rijo, M. (2013). SCADA system with predictive controller applied to irrigation canals. Control Engineering Practice, 21(6), 870-886. https://doi.org/10.1016/j.conengprac.2013.01.008
Ghazaw, Y.M. (2011). Design and analysis of a canal section for minimum water loss. Alexandria Engineering Journal, 50 (4),337-344. https://doi.org/10.1016/j.aej.2011.12.002
Howell, T.A. (2003). Irrigation efficiency. Encyclopedia of water science. Marcel Dekker, New York. 1 (1), 467-472.
Hashemy Shahdany, S.M., Adib Majd, E., Firoozfar, A., Maestre, j. m. (2016). Improving Operation of a Main Irrigation Canal Suffering from Inflow Fluctuation within a Centralized Model Predictive Control System: Case Study of Roodasht Canal, Iran. Journal of Irrigation and Drainage Engineerin, 142 (11), 1-9.
Israelsen, O.W. (1932). Irrigation principles and practices. Irrigation principles and practices.
Kinzli, K.D., Martinez, M., Oad, R., Prior, A., Gensler, D. (2010). Using an ADCP to determine canal seepage loss in an irrigation district. Agricultural Water Management, 97 (6),801 – 810. https://doi.org/10.1016/j.agwat.2009.12.014
Kraatz, D.B. 1977. Irrigation canal lining. FAO.
Lei, L., Yi, L., Chansheng, H., Jianbin, L., Xiubin, L. (2010). Roles of the combined irrigation, drainage, and storage of the canal network in improving water reuse in the irrigation districts along the lower Yellow River, China. Journal of Hydrology, 391(2), 157 – 174. https://doi.org/10.1016/j.jhydrol.2010.07.015
Mohammadi, A., Parvaresh Rizi, A., Abbasi, N. (2019). Field measurement and analysis of water losses at the main and tertiary levels of irrigation canals: Varamin Irrigation Scheme, Iran. Global Ecology and Conservation, 1(18), e00646. https://doi.org/10.1016/j.gecco.2019.e00646
Martin, C.A. Gates, T.K. (2014). Uncertainty of canal seepage losses estimated using flowing water balance with acoustic Doppler devices. Journal of Hydrology, 517 (19), 746-761. https://doi.org/10.1016/j.jhydrol.2014.05.074
Pere, S., Luca, S., Enric, Q., Cristian, P., Oscar, G. (2016). Estimating Water Consumption and Irrigation Requirements in a Long‐Established Mediterranean Rural Community by Remote Sensing and Field Data. Journal of Irrigation and Drainage, 65 (5), 578 – 588. https://doi.org/10.1002/ird.1978
Robinson, A.R., Rohwer, C. (1959). Measuring seepage from irrigation channels (No. 1203). US Dept. of Agriculture.
Shahdany, S.H., Firoozfar, A.R. (2017). Providing a reliable water level control in main canals under significant inflow fluctuations at drought periods within canal automation. Water resources management, 31(11), 3343-3354. https://doi.org/10.1007/s11269-017-1671-0
Shahverdi, K., Monem, M.J. (2015). Application of reinforcement learning algorithm for automation of canal structures. Irrigation and drainage, 64(1), 77-84. https://doi.org/10.1002/ird.1876
Sarki, A., Memon, S.Q., Leghari, M. (2008). Comparison of different methods for computing seepage losses in an earthen watercourse. Agricultura Tropica et Subtropica, 41(4),197-205.
Singh, B., Singh, K. K. (2014). Comparison of seepage and evaporation losses of field data analysis with analytical approach analysis - a Study of Narwana branch canal, Kurukshetra. International Journal of Enhanced Research in Science Technology & Engineering, 3(7), 204-209.
Wang, H., Liu, C., Zhang, L. (2002). Water-saving agriculture in China: an overview.
Yao, L., Feng, S., Maoa, X., Huo, Z., Kang, S., Barry, D.A. (2012). Coupled effects of canal lining and multi-layered soil structure on canal seepage and soil water dynamics. Journal of Hydrology, 2 (430), 91-102. https://doi.org/10.1016/j.jhydrol.2012.02.004
Zamani, S., Parvaresh Rizi, A., Isapoor, S. (2015). The effect of design parameters of an irrigation canal on tuning of coefficients and performance of a PI controller. Irrigation and drainage, 64 (4), 519-534.