• Home
  • Target Tracking
    • List of Articles Target Tracking

      • Open Access Article

        1 - Target Tracking in MIMO Radar Systems Using Velocity Vector
        Mohammad Jabbarian Jahromi Hossein Khaleghi Bizaki
        The superiority of multiple-input multiple-output (MIMO) radars over conventional radars has been recently shown in many aspects. These radars consist of many transmitters and receivers located far from each other. In this scenario, the MIMO radar is able to observe the More
        The superiority of multiple-input multiple-output (MIMO) radars over conventional radars has been recently shown in many aspects. These radars consist of many transmitters and receivers located far from each other. In this scenario, the MIMO radar is able to observe the targets from different directions. One of the advantages of these radars is exploitation of Doppler frequencies from different transmitter-target-receiver paths. The extracted Doppler frequencies can be used for estimation of target velocity vector so that, the radar can be able to track the targets by use of its velocity vector with reasonable accuracy. In this paper, two different processing systems are considered for MIMO radars. First one is the pulse Doppler system, and the second one is continuous wave (CW) system without range processing. The measurement of the velocity vector of the target and its counterpart errors are taken into account. Also, the extended Kalman target tracking by using its velocity vector is considered. Besides, its performance is compared with those of MIMO target tracking without using the velocity vector and conventional radars. The simulation results show that the MIMO radars using velocity vector have superior performance over other above-mentioned radars in fast maneuvering target tracking. Since the range processing is ignored in CW MIMO radar systems, the complexity of this system is much lower than that of Pulse Doppler MIMO radar system, but has lower performance in tracking fast maneuvering target. Manuscript profile
      • Open Access Article

        2 - SQP-based Power Allocation Strategy for Target Tracking in MIMO Radar Network with Widely Separated Antennas
        Mohammad  Akhondi Darzikolaei Mohammad Reza Karami-Mollaei Maryam Najimi
        MIMO radar with widely separated antennas enhances detection and estimation resolution by utilizing the diversity of the propagation path. Each antenna of this type of radar can steer its beam independently towards any direction as an independent transmitter. However, t More
        MIMO radar with widely separated antennas enhances detection and estimation resolution by utilizing the diversity of the propagation path. Each antenna of this type of radar can steer its beam independently towards any direction as an independent transmitter. However, the joint processing of signals for transmission and reception differs this radar from the multistatic radar. There are many resource optimization problems which improve the performance of MIMO radar. But power allocation is one of the most interesting resource optimization problems. The power allocation finds an optimum strategy to assign power to transmit antennas with the aim of minimizing the target tracking errors under specified transmit power constraints. In this study, the performance of power allocation for target tracking in MIMO radar with widely separated antennas is investigated. Therefore, a MIMO radar with distributed antennas is configured and a target motion model using the constant velocity (CV) method is modeled. Then Joint Cramer Rao bound (CRB) for target parameters (joint target position and velocity) estimation error is calculated. This is utilized as a power allocation problem objective function. Since the proposed power allocation problem is nonconvex. Therefore, a SQP-based power allocation algorithm is proposed to solve it. In simulation results, the performance of the proposed algorithm in various conditions such as a different number of antennas and antenna geometry configurations is examined. Results affirm the accuracy of the proposed algorithm. Manuscript profile
      • Open Access Article

        3 - Introducing a new optimal energy method for targets tracking in wireless sensor network using a hunting search algorithm
        Shayesteh Tabatabaei Hassan Nosrati Nahook
        In this paper, in order to increase the accuracy of target tracking, it tries to reduce the energy consumption of sensors with a new algorithm for tracking distributed targets called hunting search algorithm. The proposed method is compared with the DCRRP protocol and t More
        In this paper, in order to increase the accuracy of target tracking, it tries to reduce the energy consumption of sensors with a new algorithm for tracking distributed targets called hunting search algorithm. The proposed method is compared with the DCRRP protocol and the NODIC protocol, which uses the OPNET simulator version 11.5 to test the performance of these algorithms. The simulation results show that the proposed algorithm performs better than the other two protocols in terms of energy consumption, healthy delivery rate and throughput rate. Manuscript profile
      • Open Access Article

        4 - Investigation of Sensing Range for High Speed Target Tracking in Wireless Sensor Networks
        M. R. Zoghi M. H. Kahaei
        In this paper, we propose a new approach for selection of subsets of active sensors with some constraints on energy consumption and estimation error for tracking of a target. The proposed approach exploits the decentralized estimation by using the extended information f More
        In this paper, we propose a new approach for selection of subsets of active sensors with some constraints on energy consumption and estimation error for tracking of a target. The proposed approach exploits the decentralized estimation by using the extended information filter for target tracking. Furthermore, a cost function is defined using spatial correlation for sensor selection. Consequently, the Spatial Split algorithm is proposed based on spatial correlation coefficients for sensor selection. At last, for high speed targets, we propose a modification on spatial split algorithm by changing the sensing range with respect to the target speed. Simulation results show that the tracking accuracy is analogous to those of optimal estimation methods. It is also found that energy consumption decreases due to activating only necessary sensors. Manuscript profile
      • Open Access Article

        5 - An Adaptive Multi-Objective Clustering Algorithm based on Auction_Prediction for Mobile Target Tracking in Wireless Sensor Network
        Roghieh Alinezhad Sepideh Adabi arash Sharifi
        One of the applications of sensor networks is to track moving target. In designing the algorithm for target tracking two issues are of importance: reduction of energy consumption and improvement of the tracking quality. One of the solutions for reduction of energy consu More
        One of the applications of sensor networks is to track moving target. In designing the algorithm for target tracking two issues are of importance: reduction of energy consumption and improvement of the tracking quality. One of the solutions for reduction of energy consumption is to form a tracking cluster. Two major challenges in formation of the tracking cluster are when and how it should be formed. To decrease the number of messages which are exchanged to form the tracking cluster an auction mechanism is adopted. The sensor’s bid in an auction is dynamically and independently determined with the aim of establishing an appropriate tradeoff between network lifetime and the accuracy of tracking. Furthermore, since the tracking cluster should be formed and activated before the target arrives to the concerned region (especially in high speed of target), avoidance from delay in formation of the tracking cluster is another challenge. Not addressing the mentioned challenge results in increased target missing rate and consequently energy loss. To overcome this challenge, it is proposed to predict the target’s position in the next two steps by using neural network and then, simultaneously form the tracking clusters in the next one and two steps. The results obtained from simulation indicate that the proposed algorithm outperforms AASA (Auction-based Adaptive Sensor Activation). Manuscript profile
      • Open Access Article

        6 - Distributed Target Tracking by Solving Average Consensus Problem on Sensor Network Measurements
        Iman  Maghsudlu Meysam r. Danaee Hamid  Arezumand
        In this paper, a new algorithm is presented to drastically reduce communication overhead in distributed (decentralized) single target tracking in a wireless sensor network. This algorithm is based on a new approach to solving the average consensus problem and the use of More
        In this paper, a new algorithm is presented to drastically reduce communication overhead in distributed (decentralized) single target tracking in a wireless sensor network. This algorithm is based on a new approach to solving the average consensus problem and the use of distributed particle filters. For the algorithm of this paper, unlike the common algorithms that solve an average consensus problem just to approximate the global likelihood function to calculate the particle importance weights in distributed tracking, a new model for observation is presented based on the Gaussian approximation, which only solves the problem Consensus is applied to the mean on the received observations of the nodes in the network (and not to approximate the global likelihood function). These innovations significantly reduce the exchange of information between network nodes and as a result uses much less energy resources. In different scenarios, the efficiency of the proposed algorithm has been compared with the centralized algorithm and the distributed algorithm based on the graph, and the simulation results show that the communication overhead of the network is greatly reduced in exchange for an acceptable drop in tracking accuracy by using our proposed algorithm. Manuscript profile
      • Open Access Article

        7 - A New Power Allocation Optimization for One Target Tracking in Widely Separated MIMO Radar
        Mohammad Akhondi Darzikolaei Mohammad Reza Karami-Mollaei Maryam Najimi
        In this paper, a new power allocation scheme for one target tracking in MIMO radar with widely dispersed antennas is designed. This kind of radar applies multiple antennas which are deployed widely dispersed from each other. Therefore, a target is observed simultaneousl More
        In this paper, a new power allocation scheme for one target tracking in MIMO radar with widely dispersed antennas is designed. This kind of radar applies multiple antennas which are deployed widely dispersed from each other. Therefore, a target is observed simultaneously from different uncorrelated angles and it offers spatial diversity. In this radar, a target’s radar cross section (RCS) is different in each transmit-receive path. So, a random complex Gaussian RCS is supposed for one target. Power allocation is used to allocate the optimum power to each transmit antenna and avoid illuminating the extra power in the environment and hiding it from interception. This manuscript aims to minimize the target tracking error with constraints on total transmit power and the power of each transmit antenna. For calculation of target tracking error, the joint Cramer Rao bound for a target velocity and position is computed and this is assumed as an objective function of the problem. It should be noted that a target RCS is also considered as unknown parameter and it is estimated along with target parameters. This makes a problem more similar to real conditions. After the investigation of the problem convexity, the problem is solved by particle swarm optimization (PSO) and sequential quadratic programming (SQP) algorithms. Then, various scenarios are simulated to evaluate the proposed scheme. The simulation results validate the accuracy and the effectiveness of the power allocation structure for target tracking in MIMO radar with widely separated antennas. Manuscript profile