• Home
  • Cognitive Sensor Network
    • List of Articles Cognitive Sensor Network

      • Open Access Article

        1 - Lifetime Maximization by Dynamic Threshold and Sensor Selection in Multi-channel Cognitive Sensor Network
        Asma Bagheri Ataollah Ebrahimzadeh maryam najimi
        The tiny and low-cost sensors cannot simultaneously sense more than one channel since they do not have high-speed Analog-to-Digital-Convertors (ADCs) and high-power batteries. It is a critical problem when they are used for multi-channel sensing in cognitive sensor netw More
        The tiny and low-cost sensors cannot simultaneously sense more than one channel since they do not have high-speed Analog-to-Digital-Convertors (ADCs) and high-power batteries. It is a critical problem when they are used for multi-channel sensing in cognitive sensor networks (CSNs). One solution for this problem is that the sensors sense various channels at different sensing periods. Due to the energy limitation in these scenarios, the lifetime maximization will become an important issue. In this paper, maximizing the lifetime of a CSN is investigated by selecting both the cooperative sensors and their detector threshold, such that the desired detection performance constraints are satisfied. This is a NP-complete problem, and obtaining the optimum solution needs exhaustive search with exponential complexity order. Here we have proposed two convex-based optimization algorithms with low order of complexity. First algorithm applies the known instantaneous Signal-to-Noise-Ratio (SNR) and obtains the proper detector thresholds by solving an equation for every channel. Investigation the effect of detector thresholds on the energy consumption, the false alarm probability and the detection probability shows that we can minimize the detector thresholds such that the detection constraints are met. In the second algorithm in order to reduce the complexity of the problem it is proposed the Bisection method for determining detector thresholds. Because knowing the instantaneous SNR is difficult, we have investigated the performance of the second algorithm by average value of SNR. Simulation results show that the proposed algorithms improve the performance of the network in case of lifetime and energy consumption. Manuscript profile
      • Open Access Article

        2 - Joint Cooperative Spectrum Sensing and Resource Allocation in Dynamic Wireless Energy Harvesting Enabled Cognitive Sensor Networks
        maryam Najimi
        Due to the limitations of the natural frequency spectrum, dynamic frequency allocation is required for wireless networks. Spectrum sensing of a radio channel is a technique to identify the spectrum holes. In this paper, we investigate a dynamic cognitive sensor networ More
        Due to the limitations of the natural frequency spectrum, dynamic frequency allocation is required for wireless networks. Spectrum sensing of a radio channel is a technique to identify the spectrum holes. In this paper, we investigate a dynamic cognitive sensor network, in which the cognitive sensor transmitter has the capability of the energy harvesting. In the first slot, the cognitive sensor transmitter participates in spectrum sensing and in the existence of the primary user, it harvests the energy from the primary signal, otherwise the sensor transmitter sends its signal to the corresponding receiver while in the second slot, using the decode-and-forward (DF) protocol, a part of the bandwidth is used to forward the signal of the primary user and the remained bandwidth is used for transmission of the cognitive sensor. Therefore, our purposed algorithm is to maximize the cognitive network transmission rate by selection of the suitable cognitive sensor transmitters subject to the rate of the primary transmission and energy consumption of the cognitive sensors according to the mobility model of the cognitive sensors in the dynamic network. Simulation results illustrate the effectiveness of the proposed algorithm in performance improvement of the network as well as reducing the energy consumption. Manuscript profile