• Home
  • کنترل مد لغزشی مبتنی بر داده
    • List of Articles کنترل مد لغزشی مبتنی بر داده

      • Open Access Article

        1 - Data-Driven Sliding Mode Control Based on Projection Recurrent Neural Network for HIV Infection: A Singular Value Approach
        Ashkan  Zarghami mehdi  Siahi Fereidoun Nowshiravan Rahatabad
        In the present study, drug treatment of HIV infection is investigated using a Data-Driven Sliding Mode Control (DDSMC) combined with a Projection Recurrent Neural Network (PRNN). The major objective is to establish the control law that eliminates the need for HIV infect More
        In the present study, drug treatment of HIV infection is investigated using a Data-Driven Sliding Mode Control (DDSMC) combined with a Projection Recurrent Neural Network (PRNN). The major objective is to establish the control law that eliminates the need for HIV infection mathematical formulae and ensures that the physical limits of the actuator are reached. This is accomplished by creating the concepts of model-free adaptive control, in which the relation between input and output is described using local dynamic linearized models based on quasi-partial derivatives. To determine the DDSMC law, a performance index is first defined based on the fulfillment of a discrete-time exponential reaching condition. By turning this index into a quadratic programming problem, the dynamics of the PRNN are extracted based on projection theory. The closed-loop system is explicitly determined using the optimizer output equation and the closed-loop stability analysis is evaluated using the singular value approach. The simulation results reveal that the proposed algorithm has robust performance in conducting the state variables of HIV infection to the healthy equilibrium point in the face of model uncertainty and external disturbances when compared to one of the newest control techniques. Manuscript profile