• Home
  • انرژی مصرفی
    • List of Articles انرژی مصرفی

      • Open Access Article

        1 - Investigating the Effects of Hardware Parameters on Power Consumptions in SPMV Algorithms on Graphics Processing Units (GPUs)
        Farshad Khunjush
        Although Sparse matrix-vector multiplication (SPMVs) algorithms are simple, they include important parts of Linear Algebra algorithms in Mathematics and Physics areas. As these algorithms can be run in parallel, Graphics Processing Units (GPUs) has been considered as on More
        Although Sparse matrix-vector multiplication (SPMVs) algorithms are simple, they include important parts of Linear Algebra algorithms in Mathematics and Physics areas. As these algorithms can be run in parallel, Graphics Processing Units (GPUs) has been considered as one of the best candidates to run these algorithms. In the recent years, power consumption has been considered as one of the metrics that should be taken into consideration in addition to performance.  In spite of this importance, to the best of our knowledge, studies on power consumptions in SPMVs algorithms on GPUs are scarce.  In this paper, we investigate the effects of hardware parameters on power consumptions in SPMV algorithms on GPUs. For this, we leverage the possibility of setting the GPU’s parameters to investigate the effects of these parameters on power consumptions. These configurations have been applied to different formats of Sparse Matrices, and the best parameters are selected for having the best performance per power metric. Therefore, as the results of this study the settings can be applied in running different Linear Algebra algorithms on GPUs to obtain the best performance per power. Manuscript profile
      • Open Access Article

        2 - Investigating the Effect of Hardware Parameters Adjustments on Energy Consumption in Thin Matrix Multiplication Algorithm on GPUs
        mina ashouri Farshad Khunjush
        Multiplication of thin algorithmic matrices is a simple but very important part of linear and scientific algebra programs in mathematics and physics, and due to its parallel nature, GPUs are one of the most suitable and important options. To select its executive platfor More
        Multiplication of thin algorithmic matrices is a simple but very important part of linear and scientific algebra programs in mathematics and physics, and due to its parallel nature, GPUs are one of the most suitable and important options. To select its executive platform. In recent years, due to the emphasis of researchers to consider energy consumption as one of the main design goals along with efficiency, very little effort has been made to improve the energy consumption of this algorithm on the GPU. In this article, this issue is addressed from the perspective of energy efficiency in efficiency obtained. Utilizing the configuration capability introduced in modern GPUs, by statistically examining the behavior of this algorithm when using different thin matrix storage formats and different hardware settings for more than 200 matrices Slim example, the best configuration settings for the thin matrix multiplication algorithm with different storage formats on the GPU are obtained. This configuration for each storage format is selected to give the best configuration in all samples tested. Manuscript profile
      • Open Access Article

        3 - Using a multi-objective optimization algorithm for tasks allocate in the cloud-based systems to reduce energy consumption
        sara tabaghchimilan nima jafari novimipour
        Nowadays, new technologies have increased the demand for business in the web environment.Increasing demand will increase the variety and number of services. As a result, the creation of large-scale computing data centers has high operating costs and consumes huge amount More
        Nowadays, new technologies have increased the demand for business in the web environment.Increasing demand will increase the variety and number of services. As a result, the creation of large-scale computing data centers has high operating costs and consumes huge amounts of electrical power. On the other hand, inadequate and inadequate cooling systems not only cause excessive heating of resources and shorten the life of the machines. It also produces carbon that plays an important role in the weather. Therefore, they should reduce the total energy consumption of these systems with proper methods. In this research, an efficient energy management approach is provided in virtual cloud data centers, which reduces energy consumption and operational costs, and brings about an increase in the quality of services. It aims to provide a resource allocation strategy for cloud systems with the goal of reducing energy, cost of implementation and examining its use in cloud computing. The results of the simulation show that the proposed method in comaprision to NPA, DVFS, ST and MM methods can reduce the average energy consumption up to 0.626 kWh, also the need to immigration and SLA violation declined up to 186 and 30.91% respectively. Manuscript profile
      • Open Access Article

        4 - Energy-Aware Scheduling for Real-Time Unicore Mixed-Criticality Systems
        S. H. Sadeghzadeh yasser sedaghat
        Integrated modular avionics (IMA) has significantly evolved avionic industry. In this architecture, tasks with different criticality have been integrated into a share hardware in order to reduce the size, weight, power consumption and cost so they commonly use the resou More
        Integrated modular avionics (IMA) has significantly evolved avionic industry. In this architecture, tasks with different criticality have been integrated into a share hardware in order to reduce the size, weight, power consumption and cost so they commonly use the resources. The industry’s interest in integrating tasks has resulted in introducing mixed-criticality systems. Real time and assurance of executing critical tasks are considered of the two basic needs for these kinds of systems. However, integration of critical and non-critical tasks makes some problems for scheduling executing tasks. On the other hand, reducing energy consumption is another important need as these devices run by batteries. Therefore, the present study aims at satisfying the above mentions needs (real time scheduling and reducing energy consumption) by introducing an innovative energy- aware scheduling approach. The proposed algorithm guarantees executing critical tasks as well as reducing energy consumption by dynamic voltage and frequency scaling (DVFS). The results of simulation showed that energy consumption of the proposed algorithm improved up to 14% in comparison with the similar approaches. Manuscript profile
      • Open Access Article

        5 - Priority-Based Task Scheduling Using Fuzzy System in Mobile Edge Computing
        Entesar Hosseini Mohsen Nickray SH. GH.
        Mobile edge computing (MEC) are new issues to improve latency, capacity and available resources in Mobile cloud computing (MCC). Mobile resources, including battery and CPU, have limited capacity. So enabling computation-intensive and latency-critical applications are i More
        Mobile edge computing (MEC) are new issues to improve latency, capacity and available resources in Mobile cloud computing (MCC). Mobile resources, including battery and CPU, have limited capacity. So enabling computation-intensive and latency-critical applications are important issue in MEC. In this paper, we use a standard three-level system model of mobile devices, edge and cloud, and propose two offloading and scheduling algorithms. A decision-making algorithm for offloading tasks is based on the greedy Knapsack offloading algorithm (GKOA) on the mobile device side, which selects tasks with high power consumption for offloading and it saves energy consumption of the device. On the MEC side, we also present a dynamic scheduling algorithm with fuzzy-based priority task scheduling (FPTS) for prioritizing and scheduling tasks based on two criteria. Numerical results show that our proposed work compared to other methods and reduces the waiting time, latency and system overhead. Also, provides the balance of the system with the least number of resources. And the proposed system reduces battery consumption in the smart device by up to 90%. The results show that more than 92% of tasks are executed successfully in the edge environment. Manuscript profile
      • Open Access Article

        6 - Assessment of Demand Side Resources Potential in Presence of Cooling and Heating Equipment Using Data Mining Method Based Upon K-Means Clustering Algorithm
        fatemeh sheibani M. Mollahassani-pour هنگامه کشاورز
        Under the smart power systems, determining the amount of Demand Response Resources(DRRs) potential is considered as a crucial issue due to affecting in all energy policy decisions. In this paper, the potential of DRRs in presence of cooling and heating equipment are ide More
        Under the smart power systems, determining the amount of Demand Response Resources(DRRs) potential is considered as a crucial issue due to affecting in all energy policy decisions. In this paper, the potential of DRRs in presence of cooling and heating equipment are identified using k-means clustering algorithm as a data mining technique. In this regard, the energy consumption dataset are categorized in different clusters by k-means algorithm based upon variations of energy price and ambient temperature during peak hours of hot (Spring and Summer) and cold (Autumn and Winter) periods. Then, the clusters with the possibility of cooling and heating equipment’s commitment are selected. After that, the confidence interval diagram of energy consumption in elected clusters is provided based upon energy price variations. The nominal potential of DRRs, i.e. flexible load, will be obtained regarding the maximum and minimum differences between the average of energy consumption in upper and middle thresholds of the confidence interval diagram. The energy consumption, ambient temperature and energy price related to BOSTON electricity network over a six-year horizon time is utilized to evaluate the proposed model. Manuscript profile